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Abstract— Service-oriented Architectures (SOA) facilitate 

the dynamic and seamless integration of services offered by 

different service providers which in addition can be located 

in different trust domains. Especially for business 

integration scenarios, Federated Identity Management 

emerged as a possibility to propagate identity information 

as security assertions across company borders in order to 

secure the interaction between different services. Although 

this approach guarantees scalability regarding the 

integration of identity-based services, it exposes a service 

provider to new security risks. These security risks result 

from the complex trust relationships within a federation. In 

a federation the authentication of a user is not necessarily 

performed within the service provider’s domain, but can be 

performed in the user’s local domain. Consequently, the 

service provider has to rely on authentication results 

received from a federation partner to enforce access control. 

This implies that the quality of the authentication process is 

out of control by the service provider and therefore 

becomes a factor which needs to be considered in the 

access control step. In order to guarantee a designated level 

of security, the quality of the authentication process should 

be part of the access control decision. To ease this process, 

we propose in this paper a method to rate authentication 

information by a level of trust which describes the strength 

of an authentication method. Additionally, in order to 

support the concept of a two-factor authentication, we also 

present a mathematical model to calculate the trust level 

when combining two authentication methods. Quantitative 

Trust Management (QTM) provides a dynamic 

interpretation of authorization policies for access control 

decisions based on upon evolving reputations of the entities 

involved. QuanTM, a QTM system, selectively combines 

elements from trust management and reputation 

management to create a novel method for policy evaluation. 

Trust management, while effective in managing access with 

delegated credentials (as in PolicyMaker and KeyNote), 

needs greater flexibility in handling situations of partial 

trust. Reputation management provides a means to quantify 

trust, but lacks delegation and policy enforcement. This 

paper reports on QuanTM’s design decisions and novel 

policy evaluation procedure. A representation of quantified 

trust relationships, the trust dependency graph, and a 

sample QuanTM application specific to the KeyNote trust 

management language, are also proposed. 
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I. INTRODUCTION  

Creating software which is flexible and highly 

customizable to adapt to fast changing business needs 

has moved into the main focus of software 

developers. Enterprises demand a seamless 

communication between applications independent 

from the platform on which they run and even across 

domain boundaries. Service-oriented Architectures 

and XML Web Services have been designed to meet 

these concerns, allowing a flexible integration of 

services provided by independent business partners. 

However, the seamless and straightforward 

integration of cross-organisational services conflicts 

with the need to secure and control access to these 

services. The traditional approach to restrict service 

access is based on user authentication performed by 

the service provider itself, cf. [18]. Since credentials 

(e.g. user name and password) needed to access a 

service are issued and managed by the service 

provider, this approach is referred to as isolated 

identity management as stated in [13]. It requires 

service users to register a digital identity at each 

involved service provider and to authenticate 

separately for each service access. Federated Identity 

Management as a new identity model provides 

solutions for these problems by enabling the 

propagation of identity information to services 

located in different trust domains. It enables service 

users to access all services in a federation using the 

same identification data. Several frameworks and 

standards for Federated Identity Management have 

been specified (e.g. WS-Federation [1] and Liberty 

Identity Web Services Framework (ID-WSF) 2.0 

[31]). The key concept in a federation is the 

establishment of trust whereby all parties in a 

federation are willing to rely on asserted claims about 

a digital identity such as SAML assertions [24]. As 

Service-oriented Architectures move from an isolated 

identity management scheme to a federated identity 

management, service providers are exposed to new 

risks. In a federation the authentication of a user is 

not necessarily performed within the service 

provider’s domain, but can be done within the user’s 

local domain. Consequently, the service provider has 

to trust the authentication performed by the user’s 

identity provider. In terms of security this is a critical 

situation since authorization and access control of the 

service are highly dependent on the authentication 

results. A weak authentication jeopardises the 

dependent service’s security by increasing the risk 

that a user can personate as someone else and gain 

improper access. OASIS considers this as a serious 

risk [23] and recommends to agree on a common trust 

level in terms of policies, procedures and 

responsibilities to ensure that a relying party can trust 

the processes and methods used by the identity 
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provider. Jøsang et. al. [13] describe the usage of 

such a common trust level as a symmetric trust 

relationship, since all parties are exposed to an equal 

risk in the case of failure. As opposed to this, having 

different trust requirements and mechanisms is 

referred to as an asymmetric trust relationship. They 

argue that asymmetric trust relationships are hard to 

establish, since the parties are exposed to different 

risks in the case of failure. However, with regard to 

complex SOA – that might be based on the dynamic 

selection of services and service providers – defining 

and enforcing a common trust level is 

disadvantageous: A symmetric trust relationship 

between the providers in a federation would require a 

trust level, which is sufficient for the service with the 

strongest authentication requirements. These 

requirements, however, might not be necessary for all 

services within the federation and might change if 

this service is dynamically replaced. Consequently, 

users are forced to authenticate by a predefined strong 

authentication method, even though weak 

authentication would be sufficient for the service they 

want to access. Likewise, when users are fixed to a 

predefined authentication method according to the 

specified trust level, access will be denied even 

though the user might be able to verify his identity in 

an even more trusted way. Altogether, there is a 

growing demand for more flexibility in authentication 

processes in SOA. To achieve this flexibility, a way 

to rate the trust relationship between identity provider 

and service provider is needed in order to restrict the 

service access based on an individual trust level. The 

general idea of classifying authentication methods 

according to their level of trustworthiness is not new. 

Especially in the field of e-Government, various 

countries have launched e-authentication initiatives in 

order to secure access to critical e-Government 

services [26, 11, 17, 5]. All of these initiatives have in 

common that they define authentication trust levels – 

mostly four different levels – in a way that covers the 

main use cases, reaching from ―no security needed‖ 

to ―critical application‖. For each level, requirements 

for the authentication process are defined. This 

means, authentication methods are always assigned to 

predefined levels, but not the other way around. To 

provide authentication in a truly flexible manner, we 

present in this paper: 

 

• A formal definition of trust levels to quantify the 

trust that is established by using a particular 

authentication method. This definition is globally 

applicable and not restricted to a specific use case 

setting requiring specific bootstrapping algorithms. 

This way, the meaning of a trust level based on our 

approach is clear and can be applied to any use case 

without the need to know any further set up or 

environment parameters. 

• A mathematical model to combine different 

authentication methods as used in a two-factor 

authentication and to calculate their combined 

authentication trust level. 

• An example calculation that demonstrates the 

applicability of our mathematical model to existing 

authentication methods. 

 

The emergence of distributed topologies and 

networked services has resulted in applications that 

are stored, maintained, and accessed remotely via a 

client/server model. The advantages of such a setup 

are many, but the challenges of access control and 

identity management must be addressed. Trust 

management and reputation management are two 

differing approaches to the problem. While effective 

with regard to explicit declarations, trust management 

lacks applicability when relationships are 

characterized by uncertainty. Thus, trust management 

is useful in enforcing existing trust relationships but 

ineffective in the formation of partially trusted ones. 

Reputation management provides a means of 

quantifying trust relationships dynamically, but lacks 

access enforcement and delegation mechanisms. To 

address this divide we introduce the notion of 

Quantitative Trust Management (QTM), an approach 

that merges concepts from trust and reputation 

management. It (QTM) creates a method for 

specifying both policy and reputation for dynamic 

decision making in access control settings. A system 

built upon QTM can not only enforce delegated 

authorizations but also adapt its policy as partial 

information becomes more complete. The output is a 

quantitative trust value that expresses how much a 

policy-based decision should be trusted given the 

reputations of the entities involved. Further, to make 

this novel concept concrete, we propose QuanTM, an 

architecture for supporting QTM. In this application 

of QuanTM, we use the KeyNote [8, 7] (KN) trust 

management language and specification, due to its 

well defined delegation logic and compliance system. 

Summarily, a KN evaluator checks a user’s access 

credentials against local policy to produce a 

compliance value from a finite and predefined set of 

values. The compliance value is then used to make 

access decisions. KN allows principals to delegate 

access rights to other principals without affecting the 

resulting compliance value. Further, KN is 

monotonic: If a given request evaluates to some 

compliance value, adding more credentials or 

delegations will not lower that value. We argue that 

credentials should not be explicitly trusted, nor 

should the trustworthiness of delegating principals be 

ignored. Furthermore, the result of evaluation for a 

given access request may need to be dynamic [9]. 

Service providers may find it desirable to arrive at 

different opinions based on local constraints, policies, 

and principals for the same request. In QuanTM, this 

is easily expressed. We address these issues in the 

following two ways: (1) It includes a means to 

dynamically assign reputation to principals and their 

relationships within a request, and (2) It provides a 
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mechanism for combining this information to produce 

a trust value. In QuanTM, a trust value (often a real 

number) is used to represent the the trustworthiness 

of a given compliance value and how it was reached. 

Our proposed QuanTM architecture (see Fig. 1) 

consists of three sub-systems: 

 

1. Trust management consists of a trust language 

evaluator that verifies requests meet policy 

constraints, and a trust dependency graph (TDG) 

extractor that constructs a graph representing trust 

relationships. 

2. Reputation management consists of two modules. 

First, a reputation algorithm to dynamically produce 

reputation values by combining feedback. These 

reputation values weigh TDG edges. Second, a 

reputation quantifier computes the trust value for a 

given request by evaluating the weighted TDG. 

3. Decision management is composed of a decision 

maker that arrives at an access determination based 

on a trust 

value, context, and an application specific meta-

policy that encodes a cost-benefit analysis. The 

design of QuanTM has been guided by the 

requirement that the individual components will be 

application specific, and thus, we have designed 

QuanTM modularly. QuanTM provides a simple 

interface by which different trust management 

languages, reputation algorithms, and decision 

procedures may be included. In this paper, we 

propose a QuanTM design instance that utilizes the 

KeyNote language and TNA-SL [11, 12] reputation 

algorithm. This instance’s implementation and 

evaluation is the subject of future work. 

A. Background  

Several approaches to define levels of trustworthiness 

for authentication mechanisms have been proposed in 

recent years indicating the importance of such a 

concept. In the area of e-Government, the UK Office 

of the e-Envoy has published a document called 

―Registration and Authentication – e-Government 

Strategy Framework Policy and Guideline‖ [26]. In 

this document the initial registration process of a 

person with the system as well as the authentication 

process for a user’s engagement in an e-Government 

transaction are defined. Depending on the severity of 

consequences that might arise from unauthorized 

access, four authentication trust levels are defined, 

reaching from Level 0 for minimal damage up to 

Level 3 for substantial damage. The IDABC [11] 

(Interoperable Delivery of European eGovernment 

Services to public Administrations, Businesses and 

Citizens) is a similar project managed by the 

European Commission. It publishes recommendations 

and develops common solutions in order to improve 

the electronic communication within the public 

sector. Its Authentication Policy Document [7] 

defines four assurance levels as well, which are also 

associated with the potential damage that could be 

caused. For each of the four levels the document 

defines the requirements for the registration phase 

and for the electronic authentication. The e-

Authentication Initiative is a major project of the e-

Government program of the US. The core concept is 

a federated architecture with multiple e-Government 

applications and credential providers. The intention is 

that the e-Authentication Initiative provides an 

architecture which delivers a uniform, government-

wide approach for authentication while leaving the 

choice of concrete authentication technologies with 

the individual government agencies. In this context, 

the initiative has published a policy called 

―EAuthentication Guidance for Federal Agencies‖ [5] 

to assist agencies in determing the appropriate level 

of identity assurance for electronic transactions. The 

document defines four assurance levels, which are 

based on the risks associated with an authentication 

error. Which technical requirements apply for each 

assurance level is described in a recommendation of 

the National Institute of Standards and Technology 

(NIST), which is called 

 

II. PEER TO PEER OBJECT STORE MODEL  

A P2P object store consists of nodes that hold objects 

and interact with other nodes. Each node contributes a 

part of its local storage to the object store. To achieve 

availability, objects are replicated by using 

information dispersal algorithms (IDA) [55, 54] such 

as erasure codes [59], and by active, distributed 

refreshing tasks. Besides, there are also mechanisms 

to securely delete objects [9] and to ensure 

consistency in case of network partitions or concurrent 

operations [17]. Nodes and objects are addressed by a 

globally unique identifier, henceforth called ID, which 

is translated to a network address by the overlay 

network. Identifiers are published to a data structure 

such as a Distributed Hash Table (DHT) [10, 21, 57, 

65, 69] to allow efficient lookup and address 

translation. In general, identifiers of objects in the 

object store are self-verifying. Roughly speaking, this 

means that the ID of an object or data block is equal to 

the output of a hash function over the object’s data. 

Storage nodes that are charged with holding blocks or 

objects verify the object’s hash against its ID and deny 

a store request in case of inconsistencies. As self-

verifying identifiers change on each modification, 

they are not suitable for persistent reference to objects 

or nodes. Non-self-verifying objects have an identifier 

that does not depend on the object’s content, e.g. a 

hash of a human-readable filename, and a public key. 

 

The header object consists of the block and key tree 

object identifiers and encrypted keys. An object 

consists of two parts: a data part and a meta-data part 

which contains information like object size, last 

modification time, and so forth. The meta-data of 

stored objects can be extended to also encompass 

access control information yielding in the general 
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object. It consists of an anchor and a header object. As 

an exception, the anchor is not stored in the object 

store, but resides locally on Gatekeepers. It consists of 

a non-self-verifying IDObj that identifies the object 

uniquely and a reference IDHObj to the current header 

object. To enable partial updates and to allow for 

limited storage capacity on nodes, the stored object is 

segmented into small blocks of e.g. 64kB size each, 

which contain the actual encrypted data. The header 

object consists of a list of references to these. For each 

block, the header object also contains two entries for 

the key information. Note that the key tree identifiers 

IDKTO and key encrypting keys PKR can be distinct 

for each entry. 

 

We consider the following anycast field equations 

defined over an open bounded piece of network and 

/or feature space 
dR . They describe the 

dynamics of the mean Security Key of each of p

node populations. 

|

1

( ) ( , ) ( , ) [( ( ( , ), ) )]

(1)
( , ), 0,1 ,

( , ) ( , ) [ ,0]

p

i i ij j ij j

j

ext

i

i i

d
l V t r J r r S V t r r r h dr

dt

I r t t i p

V t r t r t T









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


   
   



  

 

We give an interpretation of the various parameters 

and functions that appear in (1),  is finite piece of 

nodes and/or feature space and is represented as an 

open bounded set of 
dR . The vector r  and r  

represent points in   . The function : (0,1)S R  

is the normalized sigmoid function: 

 

 
1

( ) (2)
1 z

S z
e




  

It describes the relation between the input rate iv  of 

population i  as a function of the packets potential, 

for example, [ ( )].i i i i iV v S V h    We note V  

the p   dimensional vector 1( ,..., ).pV V The p  

function , 1,..., ,i i p   represent the initial 

conditions, see below. We note   the  p   

dimensional vector 1( ,..., ).p   The p  function 

, 1,..., ,ext

iI i p  represent external factors from 

other network areas. We note 
extI  the p   

dimensional vector 1( ,..., ).ext ext

pI I The p p  

matrix of functions , 1,...,{ }ij i j pJ J   represents the 

connectivity between populations i  and ,j  see 

below. The p  real values , 1,..., ,ih i p  determine 

the threshold of activity for each population, that is, 

the value of the nodes potential corresponding to 50% 

of the maximal activity. The p real positive values 

, 1,..., ,i i p   determine the slopes of the sigmoids 

at the origin. Finally the p real positive values 

, 1,..., ,il i p   determine the speed at which each 

anycast node potential decreases exponentially 

toward its real value. We also introduce the function 

: ,p pS R R  defined by 

1 1 1( ) [ ( ( )),..., ( ))],p pS x S x h S h     and the 

diagonal p p  matrix 
0 1( ,..., ).pL diag l l Is the 

intrinsic dynamics of the population given by the 

linear response of data transfer. ( )i

d
l

dt
  is replaced 

by 
2( )i

d
l

dt
  to use the alpha function response. We 

use ( )i

d
l

dt
  for simplicity although our analysis 

applies to more general intrinsic dynamics. For the 

sake, of generality, the propagation delays are not 

assumed to be identical for all populations, hence 

they are described by a matrix ( , )r r  whose 

element ( , )ij r r is the propagation delay between 

population j  at r  and population i  at .r  The 

reason for this assumption is that it is still unclear 

from anycast if propagation delays are independent of 

the populations. We assume for technical reasons that 

  is continuous, that is 
20( , ).p pC R 

   

Moreover packet data indicate that   is not a 

symmetric function i.e., ( , ) ( , ),ij ijr r r r   thus no 

assumption is made about this symmetry unless 

otherwise stated. In order to compute the righthand 

side of (1), we need to know the node potential factor 

V  on interval [ ,0].T  The value of T  is obtained 

by considering the maximal delay: 

 ,
, ( , )

max ( , ) (3)m i j
i j r r

r r 


   

Hence we choose mT    

 

A. Mathematical Framework 

A convenient functional setting for the non-delayed 

packet field equations is to use the space 
2( , )pF L R   which is a Hilbert space endowed 

with the usual inner product: 

 

1

, ( ) ( ) (1)
p

i iF
i

V U V r U r dr




   

To give a meaning to (1), we defined the history 

space 
0([ ,0], )mC C F   with 
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[ ,0]sup ( ) ,
mt t F    which is the Banach 

phase space associated with equation (3). Using the 

notation ( ) ( ), [ ,0],t mV V t        we write 

(1) as  

.

0 1

0

( ) ( ) ( ) ( ), (2)
,

ext

tV t L V t L S V I t

V C


    


 

  

Where  

 
1 : ,

(., ) ( , (., ))

L C F

J r r r dr  





  
  

Is the linear continuous operator satisfying 

2 21 ( , )
.p pL R

L J 
  Notice that most of the papers 

on this subject assume   infinite, hence requiring 

.m      

 

 

Proposition 1.0  If the following assumptions are 

satisfied. 

1. 
2 2( , ),p pJ L R     

2. The external current 
0( , ),extI C R F   

3. 
2

0 2( , ),sup .p p

mC R  

 
     

Then for any ,C  there exists a unique solution 

1 0([0, ), ) ([ , , )mV C F C F      to (3) 

Notice that this result gives existence on ,R  finite-

time explosion is impossible for this delayed 

differential equation. Nevertheless, a particular 

solution could grow indefinitely, we now prove that 

this cannot happen. 

 

B. Boundedness of Solutions 

A valid model of neural networks should only feature 

bounded node asymptotic potentials.  

 

Theorem 1.0 All the trajectories are ultimately 

bounded by the same constant R  if 

max ( ) .ext

t R F
I I t
    

Proof :Let us defined :f R C R   as 

2

0 1

1
( , ) (0) ( ) ( ), ( )

2

def
ext F

t t t F

d V
f t V L V L S V I t V t

dt
    

  

We note 1,...mini p il l   

 
2

( , ) ( ) ( ) ( )t F F F
f t V l V t p J I V t    

  

Thus,  if 

 

2.
( ) 2 , ( , ) 0

2

def def
F

tF

p J I lR
V t R f t V

l


 
      

  

Let us show that the open route of F  of center 0 and 

radius , ,RR B  is stable under the dynamics of 

equation. We know that ( )V t  is defined for all 

0t s  and that 0f   on ,RB  the boundary of 

RB . We consider three cases for the initial condition 

0.V If 0 C
V R  and set 

sup{ | [0, ], ( ) }.RT t s t V s B     Suppose that 

,T R  then ( )V T  is defined and belongs to ,RB  

the closure of ,RB  because  RB is closed, in effect to 

,RB  we also have 

2
| ( , ) 0t T TF

d
V f T V

dt
      because 

( ) .RV T B  Thus we deduce that for 0   and 

small enough, ( ) RV T B   which contradicts the 

definition of T. Thus T R  and RB is stable. 

 Because f<0 on , (0)R RB V B   implies 

that 0, ( ) Rt V t B   . Finally we consider the 

case (0) RV CB . Suppose that   

0, ( ) ,Rt V t B    then 
2

0, 2 ,
F

d
t V

dt
     

thus ( )
F

V t  is monotonically decreasing and 

reaches the value of R in finite time when ( )V t  

reaches .RB  This contradicts our assumption.  Thus  

0 | ( ) .RT V T B     

 

Proposition 1.1 : Let s  and t   be measured simple 

functions on .X  for ,E M  define 

 

( ) (1)
E

E s d  
  

Then 


 is a measure on M .  

( ) (2)
X X X

s t d s d td      
  

Proof : If s  and if 1 2, ,...E E  are disjoint members 

of M whose union is ,E  the countable additivity of 

  shows that  
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1 1 1

1 1 1
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Also,
( ) 0,  

 so that 


 is not identically . 

Next, let  s  be as before, let 1,..., m   be the 

distinct values of  t,and let { : ( ) }j jB x t x    If 

,ij i jE A B   the

( ) ( ) ( )
ij

i j ij
E

s t d E        

and ( ) ( )
ij ij

i ij j ij
E E

sd td E E           

Thus (2) holds with 
ijE  in place of X . Since  X is 

the disjoint union of the sets 

(1 ,1 ),ijE i n j m     the first half of our 

proposition implies that (2) holds. 

 

 

Theorem 1.1: If K  is a compact set in the plane 

whose complement is connected, if f  is a 

continuous complex function on K  which is 

holomorphic in the interior of , and if 0,   then 

there exists a polynomial P  such that 

( ) ( )f z P z    for all z K .  If the interior of 

K is empty, then part of the hypothesis is vacuously 

satisfied, and the conclusion holds for every 

( )f C K . Note that  K need to be connected. 

Proof: By Tietze’s theorem, f  can be extended to a 

continuous function in the plane, with compact 

support. We fix one such extension and denote it 

again by f . For any 0,   let ( )   be the 

supremum of the numbers 2 1( ) ( )f z f z  Where 

1z  and 2z  are subject to the condition 2 1z z   . 

Since f  is uniformly continous, we have 

0
lim ( ) 0 (1)


 


  From now on,   will 

be fixed. We shall prove that there is a polynomial 

P  such that  

  

 ( ) ( ) 10,000 ( ) ( ) (2)f z P z z K      

By (1),   this proves the theorem. Our first objective 

is the construction of a function 
' 2( ),cC R  such 

that for all z   

( ) ( ) ( ), (3)

2 ( )
( )( ) , (4)

f z z

z

 

 



 

 
  

And 

1 ( )( )
( ) ( ), (5)

X

z d d i
z


    

 


    


  

Where X  is the set of all points in the support of   

whose distance from the complement of K  does not 

 . (Thus  X contains no point which is ―far within‖ 

K .) We construct  as the convolution of f  with a 

smoothing function A. Put ( ) 0a r   if ,r  put  

 
2

2

2 2

3
( ) (1 ) (0 ), (6)

r
a r r 

 
   

  
And define 

( ) ( ) (7)A z a z
  

For all complex z . It is clear that 
' 2( )cA C R . We 

claim that  

2

3

1, (8)

0, (9)

24 2
, (10)

15

sR

R

R

A

A

A
 



 

  







    

 

The constants are so adjusted in (6) that (8) holds.  

(Compute the integral in polar coordinates), (9) holds 

simply because A  has compact support. To compute 

(10), express A  in polar coordinates, and note that 

0,A


 


  

 

' ,A a
r

  
  

Now define 

2 2

( ) ( ) ( ) ( ) (11)

R R

z f z Ad d A z f d d           

  

Since f  and A  have compact support, so does  . 

Since  

 

2

( ) ( )

[ ( ) ( )] ( ) (12)

R

z f z

f z f z A d d   

 

  
 

And ( ) 0A    if ,    (3) follows from (8). 

The difference quotients of A  converge boundedly 

to the corresponding partial derivatives, since 
' 2( )cA C R . Hence the last expression in (11) may 

be differentiated under the integral sign, and we 

obtain 
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2

2

2

( )( ) ( )( ) ( )

( )( )( )

[ ( ) ( )]( )( ) (13)

R

R

R

z A z f d d

f z A d d

f z f z A d d

   

   

   

   

  

   







   

The last equality depends on (9). Now (10) and (13) 

give (4). If we write (13) with x  and 
y  in place 

of ,  we see that   has continuous partial 

derivatives, if we can show that 0   in ,G  

where G  is the set of all z K  whose distance from 

the complement of K  exceeds .  We shall do this 

by showing that  

 ( ) ( ) ( ); (14)z f z z G    

Note that 0f   in G , since f  is holomorphic 

there. Now if ,z G  then z   is in the interior of 

K  for all   with .   The mean value property 

for harmonic functions therefore gives, by the first 

equation in (11), 

2

2

0 0

0

( ) ( ) ( )

2 ( ) ( ) ( ) ( ) (15)

i

R

z a r rdr f z re d

f z a r rdr f z A f z

 








  

  

 

 

  

For all z G  , we have now proved (3), (4), and (5) 

The definition of X  shows that X is compact and 

that X  can be covered by finitely many open discs 

1,..., ,nD D  of radius 2 ,  whose centers are not in 

.K  Since 
2S K  is connected, the center of each 

jD  can be joined to   by a polygonal path in 

2S K . It follows that each jD contains a compact 

connected set ,jE  of diameter at least 2 ,  so that 

2

jS E  is connected and so that .jK E     

with 2r  . There are functions 
2( )j jg H S E   

and constants jb  so that the inequalities. 

 

2

2

50
( , ) , (16)

1 4,000
( , ) (17)

j

j

Q z

Q z
z z







 



 
 

   

Hold for jz E  and ,jD   if  

2( , ) ( ) ( ) ( ) (18)j j j jQ z g z b g z      

Let   be the complement of 1 ... .nE E   Then 

 is an open set which contains .K  Put 

1 1X X D   and 

1 1( ) ( ... ),j j jX X D X X       for 

2 ,j n    

Define  

( , ) ( , ) ( , ) (19)j jR z Q z X z    

  

And 

1
( ) ( )( ) ( , ) (20)

( )

X

F z R z d d

z

   




 





  

Since,  

1

1
( ) ( )( ) ( , ) , (21)

i

j

j X

F z Q z d d   


  

  

(18) shows that F  is a finite linear combination of 

the functions 
jg  and 

2

jg . Hence ( ).F H 
 
By 

(20), (4), and (5) we have  

2 ( )
( ) ( ) | ( , )

1
| ( ) (22)

X

F z z R z

d d z
z

 




  


 

 



  

Observe that the inequalities (16) and (17) are valid 

with R  in place of jQ  if X   and .z   Now 

fix  .z   , put ,iz e     and estimate the 

integrand in (22) by (16) if 4 ,   by (17) if 

4 .    The integral in (22) is then seen to be less 

than the sum of 

4

0

50 1
2 808 (23)d



   
 

 
  

 
   

And  
2

24

4,000
2 2,000 . (24)d




   





   

Hence (22) yields 

( ) ( ) 6,000 ( ) ( ) (25)F z z z    

  

Since ( ), ,F H K    and 
2S K  is 

connected, Runge’s theorem shows that F  can be 

uniformly approximated on K  by polynomials. 

Hence (3) and (25) show that (2) can be satisfied. 

This completes the proof. 
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Lemma 1.0 : Suppose 
' 2( ),cf C R  the space of all 

continuously differentiable functions in the plane, 

with compact support. Put  

1
(1)

2
i

x y

  
   

  
  

Then the following ―Cauchy formula‖ holds: 

2

1 ( )( )
( )

( ) (2)

R

f
f z d d

z

i


 

 

  


 



 


  

Proof: This may be deduced from Green’s theorem. 

However, here is a simple direct proof: 

Put ( , ) ( ), 0,ir f z re r      real 

 If ,iz re     the chain rule gives 

1
( )( ) ( , ) (3)

2

i i
f e r

r r

  


  
     

  

The right side of (2) is therefore equal to the limit, as 

0,   of 

 

2

0

1
(4)

2

i
d dr

r r





 




   
  

  
 

 

 

 

 

For each 0,r   is periodic in ,  with period 2

. The integral of /    is therefore 0, and (4) 

becomes 

2 2

0 0

1 1
( , ) (5)

2 2
d dr d

r

 




    

 

 
 

  
  

As 0, ( , ) ( )f z      uniformly.  This 

gives (2)  

 

If X a   and  1,... nX k X X  , then 

X X X a      , and so A  satisfies the 

condition ( ) . Conversely, 

,

( )( ) ( ),
nA

c X d X c d X finite sums   

   

  



 

  


  

and so if A  satisfies ( ) , then the subspace 

generated by the monomials ,X a  , is an ideal. 

The proposition gives a classification of the 

monomial ideals in  1,... nk X X : they are in one to 

one correspondence with the subsets A  of 
n  

satisfying ( ) . For example, the monomial ideals in 

 k X  are exactly the ideals ( ), 1nX n  , and the 

zero ideal (corresponding to the empty set A ). We 

write |X A    for the ideal corresponding to 

A  (subspace generated by the ,X a  ). 

 

LEMMA 1.1.  Let S  be a subset of 
n . The the 

ideal a  generated by ,X S   is the monomial 

ideal corresponding to   

 | ,
df

n nA some S           

Thus, a monomial is in a  if and only if it is divisible 

by one of the , |X S   

PROOF.   Clearly A  satisfies   , and 

|a X A   . Conversely, if A  , then 

n    for some S , and 

X X X a     . The last statement follows 

from the fact that | nX X      . Let 

nA   satisfy   . From the geometry of  A , it 

is clear that there is a finite set of elements 

 1,... sS     of A such that  

 2| ,n

i iA some S          

(The 'i s  are the corners of A ) Moreover, 

|
df

a X A    is generated by the monomials 

,i

iX S
   . 

 

DEFINITION 1.0.   For a nonzero ideal a  in 

 1 ,..., nk X X , we let ( ( ))LT a  be the ideal 

generated by  

 ( ) |LT f f a   

 

LEMMA 1.2   Let a  be a nonzero ideal in  

 1 ,..., nk X X ; then ( ( ))LT a is a monomial ideal, 

and it equals 1( ( ),..., ( ))nLT g LT g  for some 

1,..., ng g a . 

PROOF.   Since  ( ( ))LT a  can also be described as 

the ideal generated by the leading monomials (rather 

than the leading terms) of elements of a . 

 

THEOREM 1.2.  Every ideal a  in  1 ,..., nk X X

is finitely generated; more precisely, 

1( ,..., )sa g g  where 1,..., sg g are any elements 

of a  whose leading terms generate ( )LT a   

PROOF.   Let f a . On applying the division 

algorithm, we find 
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 1 1 1... , , ,...,s s i nf a g a g r a r k X X    

 , where either 0r   or no monomial occurring in it 

is divisible by any ( )iLT g . But 

i i
r f a g a   , and therefore 

1( ) ( ) ( ( ),..., ( ))sLT r LT a LT g LT g  , implies 

that every monomial occurring in r  is divisible by 

one in ( )iLT g . Thus 0r  , and 1( ,..., )sg g g . 

 

DEFINITION 1.1.   A finite subset 

 1,| ..., sS g g  of an ideal a  is a standard (

..

( )Gr obner bases for a  if 

1( ( ),..., ( )) ( )sLT g LT g LT a . In other words, S 

is a standard basis if the leading term of every 

element of a is divisible by at least one of the leading 

terms of the ig . 

 

THEOREM 1.3  The ring 1[ ,..., ]nk X X  is 

Noetherian i.e., every ideal is finitely generated. 

 

PROOF. For  1,n   [ ]k X  is a principal ideal 

domain, which means that every ideal is generated by 

single element. We shall prove the theorem by 

induction on n . Note that the obvious map 

1 1 1[ ,... ][ ] [ ,... ]n n nk X X X k X X   is an 

isomorphism – this simply says that every polynomial 

f  in n  variables 1,... nX X  can be expressed 

uniquely as a polynomial in nX  with coefficients in 

1[ ,..., ]nk X X : 

1 0 1 1 1 1( ,... ) ( ,... ) ... ( ,... )r

n n n r nf X X a X X X a X X   

  

Thus the next lemma will complete the proof 

 

LEMMA 1.3.  If A  is Noetherian, then so also is 

[ ]A X   

PROOF.          For a polynomial 

 
1

0 1 0( ) ... , , 0,r r

r if X a X a X a a A a     

  

r  is called the degree of f , and 0a  is its leading 

coefficient. We call 0 the leading coefficient of the 

polynomial 0.  Let a  be an ideal in [ ]A X . The 

leading coefficients of the polynomials in a  form an 

ideal 
'a  in A ,  and since A  is Noetherian, 

'a will 

be finitely generated. Let 1,..., mg g  be elements of 

a  whose leading coefficients generate 
'a , and let r

be the maximum degree of ig . Now let ,f a  and 

suppose f  has degree s r , say, ...sf aX   

Then 
'a a  , and so we can write 

, ,i ii

i i

a b a b A

a leading coefficient of g

 




  

Now 

, deg( ),
is r

i i i if b g X r g


  has degree 

deg( )f  . By continuing in this way, we find that 

1mod( ,... )t mf f g g  With tf  a 

polynomial of degree t r . For each d r , let da  

be the subset of A  consisting of 0 and the leading 

coefficients of all polynomials in a  of degree ;d  it 

is again an ideal in  A . Let 
,1 ,,...,

dd d mg g  be 

polynomials of degree d  whose leading coefficients 

generate da . Then the same argument as above 

shows that any polynomial df  in a  of degree d  can 

be written 1 ,1 ,mod( ,... )
dd d d d mf f g g  

With 1df   of degree 1d  . On applying this 

remark repeatedly we find that 

1 01,1 1, 0,1 0,( ,... ,... ,... )
rt r r m mf g g g g
   Hence 

       

1 01 1,1 1, 0,1 0,( ,... ,... ,..., ,..., )
rt m r r m mf g g g g g g
   

 and so the polynomials 
01 0,,..., mg g  generate a   

 

III. THREAT MODEL  

Before explaining how access control is carried out in 

a P2P system we first have to consider the power of 

the adversary and describe the assumptions we make 

on the underlying storage system. We describe a P2P 

storage system in terms of nodes. A node is correct in 

an execution if it satisfies its specification throughout 

the execution. A node that crashes or that deviates 

from its specification is corrupt, malicious or 

Byzantine. Nodes can be corrupted by an adversary. 

The adversary’s intent is to read, modify or delete 

data, to change permissions, to prohibit read or write 

operations, or to derive cryptographic keys. He is 

assumed to be computationally bounded and thus 

cannot break the underlying cryptographic schemes 

such as decryption and encryption or digital 

signatures without knowing the appropriate 

cryptographic keys. The adversary can learn all 

information held by the corrupted nodes and can 

eavesdrop on the communication among all nodes. 

However, encrypted messages cannot be read and 

messages whose integrity is protected cannot be 

modified without this being detected. The adversary’s 

capability to corrupt nodes is also limited for different 
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types of nodes. In particular, owners are assumed to 

behave correctly when involved in operations on their 

own files. The adversary can corrupt up to t of the n 

+3t + 1 Gatekeeper nodes. This assumption ensures 

that Byzantine agreement protocols [5, 4, 15] can still 

be executed correctly. We further assume that the 

underlying P2P object store guarantees availability of 

objects at any time. This means that an object can be 

accessed any time after its creation. This can be 

achieved through replication or information dispersal 

algorithms (IDA). Moreover, we assume that each 

write operation creates an entirely new object with a 

new identifier. Therefore, it is not possible to 

overwrite existing objects. We also impose that the 

adversary is not capable of executing exhaustive 

denial-of-service (DoS) attacks. In general, those kind 

of attacks cannot be handled easily. This allows us to 

focus on confidentiality and integrity of objects and 

to perform access control in a secure way. Regarding 

the communication among the nodes, we assume an 

asynchronous model of time without any assumptions 

about message transmission delays or execution rates 

of nodes. Assume that all messages are signed by the 

involved parties including challenge-response rounds 

to guarantee freshness of messages. 

 

A. Share Share Generation and Distribution 

A joining Gatekeeper that replaces a leaving one 

needs a share of the signing key PK−1 G to sign 

future witness objects. The share di that was only 

known to the leaving Gatekeeper needs to be 

reconstructed, but the participating Gatekeepers must 

not gain any information about di. During 

initialization, the owner creates a (t+1, n)-secret 

sharing of each share di and distributes share shares 

among the initial Gatekeeper set. 8i 2 [1, n] the owner 

proceeds as follows:  

1. Let di be the share of Gatekeeper gi. The owner O 

applies a (t+1, n)-secret sharing on di by choosing a 

polynomial fi(x) of degree t such that di = fi(0). 

2. O evaluates fi(x) at n points [_1, ..., _n] and obtains 

share-shares [di1, ..., din] where dij = fi(j). 

3. The owner creates a key share object (KSO) and 

sends to each Gatekeeper gi the share-shares {d1i, ..., 

dni} which are the ith share-share of each share along 

with IDKSO. 

 

Finally, every Gatekeeper gi is in possession of his 

share di and a set of n share-shares dji 8j 2 [1, n]. 

Assume that Gatekeeper gi is no longer available and 

the remaining Gatekeepers decided to transfer the 

share di to a new entity gn+1 with public key 

PKgn+1. Each Gatekeeper gj 6= gi encrypts his 

share-share dij with PKgn+1 and sends it to gn+1. 

Additionally, they send dji which is the ith share-

share of their own share such that gn+1 can also help 

initializing joining Gatekeepers. gn+1 can verify each 

received share-share using the KSO and reconstruct 

di by using Lagrange’s formula [1, 67, 64]. 

One of the great successes of category theory in 

computer science has been the development of a 

―unified theory‖ of the constructions underlying 

denotational semantics. In the untyped  -calculus,  

any term may appear in the function position of an 

application. This means that a model D of the  -

calculus must have the property that given a term t  

whose interpretation is ,d D  Also, the 

interpretation of a functional abstraction like x . x  

is most conveniently defined as a function from 

Dto D  , which must then be regarded as an element 

of D. Let  : D D D    be the function that 

picks out elements of D to  represent elements of 

 D D  and  : D D D    be the function 

that maps elements of D to functions of D.  Since 

( )f  is intended to represent the function f  as an 

element of D, it makes sense to require that 

( ( )) ,f f    that is, 
 D D

o id 


   

Furthermore, we often want to view every element of 

D as representing some function from D to D and 

require that elements representing the same function 

be equal – that is   

( ( ))

D

d d

or

o id

 

 





  

The latter condition is called extensionality. These 

conditions together imply that and   are 

inverses--- that is, D is isomorphic to the space of 

functions from D to D  that can be the interpretations 

of functional abstractions:  D D D   .Let us 

suppose we are working with the untyped 

calculus  , we need a solution ot the equation 

 ,D A D D    where A is some 

predetermined domain containing interpretations for 

elements of C.  Each element of D corresponds to 

either an element of A or an element of  ,D D  

with a tag. This equation can be solved by finding 

least fixed points of the function 

 ( )F X A X X    from domains to domains -

-- that is, finding domains X  such that 

 ,X A X X    and such that for any domain 

Y also satisfying this equation, there is an embedding 

of X to Y  --- a pair of maps 

R

f

f

X Y   

Such that   
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R

X

R

Y

f o f id

f o f id




  

Where f g  means that f approximates g  in 

some ordering representing their information content. 

The key shift of perspective from the domain-

theoretic to the more general category-theoretic 

approach lies in considering F not as a function on 

domains, but as a functor on a category of domains. 

Instead of a least fixed point of the function, F. 

 

Definition 1.3: Let K be a category and :F K K  

as a functor. A fixed point of F is a pair (A,a), where 

A is a K-object and : ( )a F A A  is an 

isomorphism. A prefixed point of F is a pair (A,a), 

where A is a K-object and a is any arrow from F(A) 

to A 

Definition 1.4 : An chain  in a category K  is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D       

Recall that a cocone   of an chain   is a K-

object X and a collection of K –arrows 

 : | 0i iD X i    such that 1i i io f    for 

all 0i  . We sometimes write : X   as a 

reminder of the arrangement of 's  components 

Similarly, a colimit : X  is a cocone with the 

property that if 
': X   is also a cocone then 

there exists a unique mediating arrow 
':k X X  

such that for all 0,, i ii v k o  . Colimits of 

chains  are sometimes referred to as 

limco its . Dually, an 
op chain   in K is a 

diagram of the following form: 

1 2

1 2 .....
of f f

oD D D    
 
A cone : X   

of an 
op chain    is a K-object X and a 

collection of K-arrows  : | 0i iD i   such that for 

all 10, i i ii f o    . An  
op -limit of an 

op chain     is a cone : X   with the 

property that if 
': X  is also a cone, then there 

exists a unique mediating arrow 
':k X X  such 

that for all 0, i ii ok    . We write k  (or just 

 ) for the distinguish initial object of K, when it has 

one, and A  for the unique arrow from   to 

each K-object A. It is also convenient to write 

1 2

1 2 .....
f f

D D    to denote all of   except 

oD  and 0f . By analogy,  
 is  | 1i i  . For the 

images of   and   under F we write  

1 2( ) ( ) ( )

1 2( ) ( ) ( ) ( ) .....
oF f F f F f

oF F D F D F D      

and  ( ) ( ) | 0iF F i     

We write 
iF  for the i-fold iterated composition of F 

– that is, 
1 2( ) , ( ) ( ), ( ) ( ( ))oF f f F f F f F f F F f  

 ,etc. With these definitions we can state that every 

monitonic function on a complete lattice has a least 

fixed point: 

 

Lemma 1.4. Let K  be a category with initial object 

  and let :F K K  be a functor. Define the 

chain   by 
2

! ( ) (! ( )) (! ( ))
2

( ) ( ) .........
F F F F F

F F
     

        

If both : D 
 
and ( ) : ( ) ( )F F F D  

are colimits, then (D,d) is an intial F-algebra, where

: ( )d F D D
 
 is the mediating arrow from 

( )F 
 
 to the cocone 



 
 

 

Theorem 1.4 Let a DAG G given in which each node 

is a random variable, and let a discrete conditional 

probability distribution of each node given values of 

its parents in G be specified. Then the product of 

these conditional distributions yields a joint 

probability distribution P of the variables, and (G,P) 

satisfies the Markov condition. 

 

Proof. Order the nodes according to an ancestral 

ordering. Let 1 2, ,........ nX X X be the resultant 

ordering. Next define.  

 

1 2 1 1

2 2 1 1

( , ,.... ) ( | ) ( | )...

.. ( | ) ( | ),

n n n n nP x x x P x pa P x Pa

P x pa P x pa

 
 

Where iPA is the set of parents of iX of in G and 

( | )i iP x pa is the specified conditional probability 

distribution. First we show this does indeed yield a 

joint probability distribution. Clearly, 

1 20 ( , ,... ) 1nP x x x   for all values of the 

variables. Therefore, to show we have a joint 

distribution, as the variables range through all their 

possible values, is equal to one. To that end, 

Specified conditional distributions are the conditional 

distributions they notationally represent in the joint 

distribution. Finally, we show the Markov condition 

is satisfied. To do this, we need show for 1 k n   

that  
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whenever 

( ) 0, ( | ) 0

( | ) 0

( | , ) ( | ),

k k k

k k

k k k k k

P pa if P nd pa

and P x pa

then P x nd pa P x pa

 




 

Where kND is the set of nondescendents of kX of in 

G. Since k kPA ND , we need only show 

( | ) ( | )k k k kP x nd P x pa . First for a given k , 

order the nodes so that all and only nondescendents 

of kX precede kX in the ordering. Note that this 

ordering depends on k , whereas the ordering in the 

first part of the proof does not. Clearly then 

 

 

 

1 2 1

1 2

, ,....

, ,....

k k

k k k n

ND X X X

Let

D X X X



 





 

follows 
kd    

 

We define the 
thm cyclotomic field to be the field 

  / ( ( ))mQ x x
 
Where ( )m x is the 

thm

cyclotomic polynomial.   / ( ( ))mQ x x  ( )m x  

has degree ( )m over Q since ( )m x has degree 

( )m . The roots of ( )m x  are just the primitive 

thm roots of unity, so the complex embeddings of 

  / ( ( ))mQ x x are simply the ( )m maps  

 : / ( ( )) ,

1 , ( , ) 1,

( ) ,

k m

k

k m

Q x x C

k m k m where

x



 



 





  

m being our fixed choice of primitive 
thm root of 

unity. Note that ( )k

m mQ  for every ;k it follows 

that ( ) ( )k

m mQ Q  for all k relatively prime to 

m . In particular, the images of the i coincide, so 

  / ( ( ))mQ x x is Galois over Q . This means that 

we can write ( )mQ  for   / ( ( ))mQ x x without 

much fear of ambiguity; we will do so from now on, 

the identification being .m x  One advantage of 

this is that one can easily talk about cyclotomic fields 

being extensions of one another,or intersections or 

compositums; all of these things take place 

considering them as subfield of .C  We now 

investigate some basic properties of cyclotomic 

fields. The first issue is whether or not they are all 

distinct; to determine this, we need to know which 

roots of unity lie in ( )mQ  .Note, for example, that if 

m is odd, then m is a 2 thm root of unity. We will 

show that this is the only way in which one can 

obtain any non-
thm roots of unity. 

 

LEMMA 1.5   If m divides n , then ( )mQ   is 

contained in ( )nQ   

PROOF. Since ,
n

m
m  we have ( ),m nQ  so 

the result is clear 

 

LEMMA 1.6   If m and n are relatively prime, then  

  ( , ) ( )m n nmQ Q    

and 

           ( ) ( )m nQ Q Q    

(Recall the ( , )m nQ    is the compositum of 

( ) ( ) )m nQ and Q   

 

PROOF. One checks easily that m n  is a primitive 

thmn root of unity, so that  

( ) ( , )mn m nQ Q    

    ( , ) : ( ) : ( :

( ) ( ) ( );

m n m nQ Q Q Q Q Q

m n mn

   

  



 
 

Since  ( ) : ( );mnQ Q mn  this implies that 

( , ) ( )m n nmQ Q  
 
We know that ( , )m nQ   has 

degree ( )mn
 
over  Q , so we must have  

  ( , ) : ( ) ( )m n mQ Q n     

and 

 ( , ) : ( ) ( )m n mQ Q m     

 

 ( ) : ( ) ( ) ( )m m nQ Q Q m      

And thus that ( ) ( )m nQ Q Q    

 

PROPOSITION 1.2 For any m and n  

 

 ,
( , ) ( )m n m n

Q Q    

And  

( , )( ) ( ) ( );m n m nQ Q Q     

here  ,m n and  ,m n denote the least common 

multiple and the greatest common divisor of m and 

,n respectively. 
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PROOF.    Write 1 1

1 1...... ....k ke fe f

k km p p and p p

where the ip are distinct primes. (We allow i ie or f

to be zero) 

1 2
1 2

1 2
1 2

1 1
1 12

1 1
1 1

max( ) max( )1, ,1
1 1

( ) ( ) ( )... ( )

( ) ( ) ( )... ( )

( , ) ( )........ ( ) ( )... ( )

( ) ( )... ( ) ( )

( )....... (

e e ek
k

f f fk
k

e e f fk k
k

e f e fk k
k k

e ef k fk

m p p p

n p p p

m n p pp p

p p p p

p p

Q Q Q Q

and

Q Q Q Q

Thus

Q Q Q Q Q

Q Q Q Q

Q Q

   

   

     

   

 











 

max( ) max( )1, ,1
1 1........

,

)

( )

( );

e ef k fkp p

m n

Q

Q









 

 

An entirely similar computation shows that 

( , )( ) ( ) ( )m n m nQ Q Q   
 

 

Mutual information measures the information 

transferred when ix  is sent and iy  is received, and is 

defined as 

2

( )

( , ) log (1)
( )

i

i
i i

i

x
P

y
I x y bits

P x
  

In a noise-free channel, each iy is uniquely connected 

to the corresponding ix  , and so they constitute an 

input –output pair ( , )i ix y  for which 

 
2

1
( ) 1 ( , ) log

( )
i

i j
j

i

x
P and I x y

y P x
  bits; 

that is, the transferred information is equal to the self-

information that corresponds to the input ix
 
In a very 

noisy channel, the output iy and input ix would be 

completely uncorrelated, and so ( ) ( )i
i

j

x
P P x

y
  

and also ( , ) 0;i jI x y  that is, there is no 

transference of information. In general, a given 

channel will operate between these two extremes. The 

mutual information is defined between the input and 

the output of a given channel. An average of the 

calculation of the mutual information for all input-

output pairs of a given channel is the average mutual 

information: 

2

. .

(

( , ) ( , ) ( , ) ( , ) log
( )

i

j

i j i j i j

i j i j i

x
P

y
I X Y P x y I x y P x y

P x

 
 

   
 
 

 
 

bits per symbol . This calculation is done over the 

input and output alphabets. The average mutual 

information. The following expressions are useful for 

modifying the mutual information expression: 

( , ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ji
i j j i

j i

j
j i

ii

i
i j

ji

yx
P x y P P y P P x

y x

y
P y P P x

x

x
P x P P y

y

 









 

Then 

.

2

.

2

.

2

.

2

2

( , ) ( , )

1
( , ) log

( )

1
( , ) log

( )

1
( , ) log

( )

1
( ) ( ) log

( )

1
( ) log ( )

( )

( , ) ( ) ( )

i j

i j

i j

i j i

i j
ii j

j

i j

i j i

i
j

ji i

i

i i

I X Y P x y

P x y
P x

P x y
x

P
y

P x y
P x

x
P P y

y P x

P x H X
P x

XI X Y H X H
Y



 
  

 

 
 

  
 
 

 
 
 

 
  

 



 













 

Where 
2,

1
( ) ( , ) log

( )
i ji j

i

j

XH P x y
Y x

P
y

  

is usually called the equivocation. In a sense, the 

equivocation can be seen as the information lost in 

the noisy channel, and is a function of the backward 

conditional probability. The observation of an output 

symbol jy provides ( ) ( )XH X H
Y

  bits of 

information. This difference is the mutual 

information of the channel. Mutual Information: 

Properties Since 

( ) ( ) ( ) ( )ji
j i

j i

yx
P P y P P x

y x
  

The mutual information fits the condition 

( , ) ( , )I X Y I Y X  
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And by interchanging input and output it is also true 

that 

( , ) ( ) ( )YI X Y H Y H
X

   

Where 

2

1
( ) ( ) log

( )
j

j j

H Y P y
P y

  

This last entropy is usually called the noise entropy. 

Thus, the information transferred through the channel 

is the difference between the output entropy and the 

noise entropy. Alternatively, it can be said that the 

channel mutual information is the difference between 

the number of bits needed for determining a given 

input symbol before knowing the corresponding 

output symbol, and the number of bits needed for 

determining a given input symbol after knowing the 

corresponding output symbol 

( , ) ( ) ( )XI X Y H X H
Y

   

As the channel mutual information expression is a 

difference between two quantities, it seems that this 

parameter can adopt negative values. However, and is 

spite of the fact that for some , ( / )j jy H X y  can be 

larger than ( )H X , this is not possible for the 

average value calculated over all the outputs: 

2 2

, ,

( )
( , )

( , ) log ( , ) log
( ) ( ) ( )

i

j i j

i j i j

i j i ji i j

x
P

y P x y
P x y P x y

P x P x P y
 

 

Then 

,

( ) ( )
( , ) ( , ) 0

( , )

i j

i j

i j i j

P x P y
I X Y P x y

P x y
    

Because this expression is of the form 

2

1

log ( ) 0
M

i
i

i i

Q
P

P

  

The above expression can be applied due to the factor 

( ) ( ),i jP x P y which is the product of two 

probabilities, so that it behaves as the quantity iQ , 

which in this expression is a dummy variable that fits 

the condition 1ii
Q  . It can be concluded that 

the average mutual information is a non-negative 

number. It can also be equal to zero, when the input 

and the output are independent of each other. A 

related entropy called the joint entropy is defined as 

2

,

2

,

2

,

1
( , ) ( , ) log

( , )

( ) ( )
( , ) log

( , )

1
( , ) log

( ) ( )

i j

i j i j

i j

i j

i j i j

i j

i j i j

H X Y P x y
P x y

P x P y
P x y

P x y

P x y
P x P y













 

 

 

Theorem 1.5: Entropies of the binary erasure channel 

(BEC) The BEC is defined with an alphabet of two 

inputs and three outputs, with symbol probabilities.  

1 2( ) ( ) 1 ,P x and P x    and transition 

probabilities 

 
3 2

2 1

3

1

1

2

3

2

( ) 1 ( ) 0,

( ) 0

( )

( ) 1

y y
P p and P

x x

y
and P

x

y
and P p

x

y
and P p

x

  





 

 

 

Lemma 1.7. Given an arbitrary restricted time-

discrete, amplitude-continuous channel whose 

restrictions are determined by sets nF and whose 

density functions exhibit no dependence on the state

s , let n be a fixed positive integer, and ( )p x an 

arbitrary probability density function on Euclidean n-

space. ( | )p y x for the density 

1 1( ,..., | ,... )n n np y y x x and nF for F
. 

For any 

real number a, let 

( | )
( , ) : log (1)

( )

p y x
A x y a

p y

 
  
 

 

Then for each positive integer u , there is a code 

( , , )u n  such that 

   ( , ) (2)aue P X Y A P X F     

 

Where 

 

 

( , ) ... ( , ) , ( , ) ( ) ( | )

... ( )

A

F

P X Y A p x y dxdy p x y p x p y x

and

P X F p x dx

  

 

 

 
 

Proof: A sequence 
(1)x F such that 

 
 

1

(1)| 1

: ( , ) ;

x

x

P Y A X x

where A y x y A





   


 

Choose the decoding set 1B to be (1)x
A . Having 

chosen 
(1) ( 1),........, kx x 

and 1 1,..., kB B  , select 

kx F such that 

( )

1
( )

1

| 1 ;k

k
k

ix
i

P Y A B X x 




 
     

 


 

 

Set ( )

1

1
k

k

k ix i
B A B




  , If the process does not 

terminate in a finite number of steps, then the 

sequences 
( )ix and decoding sets , 1,2,..., ,iB i u

form the desired code. Thus assume that the process 

terminates after t  steps. (Conceivably 0t  ). We 

will show t u  by showing that  
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   ( , )ate P X Y A P X F      . We 

proceed as follows.  

Let 

 

1

( , )

. ( 0, ).

( , ) ( , )

( ) ( | )

( ) ( | ) ( )

x

x

t

jj

x y A

x y A

x y B A x

B B If t take B Then

P X Y A p x y dx dy

p x p y x dy dx

p x p y x dy dx p x








 

  

 



 



 

  



 
 

 

IV. EXPERIMENTAL DESIGN 

 

We evaluate the performance of our scheme and 

study various ―what-if‖ scenarios through detailed 

simulation experiments. We compare our scheme 

against existing alternatives of using a least recently 

used (LRU) or a least frequently used (LFU) cache 

replacement strategy. 

 

A. Algorithms 

Ideals.    Let A be a ring. Recall that an ideal a in A 

is a subset such that a is subgroup of A regarded as a 

group under addition; 

 
,a a r A ra A   

   
The ideal generated by a subset S of A is the 

intersection of all ideals A containing a ----- it is easy 

to verify that this is in fact an ideal, and that it consist 

of all finite sums of the form i i
r s  with 

,i ir A s S  . When  1,....., mS s s , we shall 

write 1( ,....., )ms s for the ideal it generates. 

Let a and b be ideals in A. The set 

 | ,a b a a b b    is an ideal, denoted by a b

. The ideal generated by   | ,ab a a b b  is 

denoted by ab . Note that ab a b  . Clearly ab

consists of all finite sums i i
a b  with ia a  and 

ib b , and if 1( ,..., )ma a a  and 1( ,..., )nb b b , 

then 1 1( ,..., ,..., )i j m nab a b a b a b .Let a  be an 

ideal of A. The set of cosets of a in A forms a ring 

/A a , and a a a  is a homomorphism 

: /A A a  . The map 
1( )b b  is a one to 

one correspondence between the ideals of /A a  and 

the ideals of A  containing a An ideal p  if prime if 

p A  and ab p a p    or b p . Thus p  

is prime if and only if /A p  is nonzero and has the 

property that  0, 0 0,ab b a      i.e., 

/A p is an integral domain. An ideal m  is maximal 

if |m A  and there does not exist an ideal n  

contained strictly between m and A . Thus m is 

maximal if and only if /A m  has no proper nonzero 

ideals, and so is a field. Note that m  maximal   

m prime. The ideals of A B  are all of the form 

a b , with a  and b  ideals in A  and B . To see 

this, note that if c  is an ideal in  A B  and 

( , )a b c , then ( ,0) ( , )(1,0)a a b c   and 

(0, ) ( , )(0,1)b a b c  . This shows that 

c a b   with  

 | ( , )a a a b c some b b  
  

and  

  
 | ( , )b b a b c some a a  

 
 

Let A  be a ring. An A -algebra is a ring B  together 

with a homomorphism :Bi A B . A 

homomorphism of A -algebra B C  is a 

homomorphism of rings : B C   such that 

( ( )) ( )B Ci a i a   for all . An  A -algebra 

B is said to be finitely generated ( or of finite-type 

over A) if there exist elements 1,..., nx x B  such 

that every element of B can be expressed as a 

polynomial in the ix  with coefficients in ( )i A , i.e., 

such that the homomorphism  1,..., nA X X B  

sending iX  to  ix is surjective.  A ring 

homomorphism A B  is finite, and B  is finitely 

generated as an A-module. Let k  be a field, and let 

A be a k -algebra. If 1 0  in A , then the map 

k A  is injective, we can identify k with its 

image, i.e., we can regard k as a subring of A  . If 

1=0 in a ring R, the R is the zero ring, i.e.,  0R  . 

Polynomial rings.  Let  k  be a field. A monomial in 

1,..., nX X  is an expression of the form 

1

1 ... ,naa

n jX X a N  . The total degree of the 

monomial is ia . We sometimes abbreviate it by 

1, ( ,..., ) n

nX a a   
. 

The elements of the 

polynomial ring  1,..., nk X X  are finite sums

1

1 1.... 1 ....... , ,n

n n

aa

a a n a a jc X X c k a  
   

With the obvious notions of equality, addition and 

multiplication. Thus the monomials from basis for  

a A
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 1,..., nk X X  as a k -vector space. The ring 

 1,..., nk X X is an integral domain, and the only 

units in it are the nonzero constant polynomials. A 

polynomial 1( ,..., )nf X X  is irreducible if it is 

nonconstant and has only the obvious factorizations, 

i.e., f gh g   or h  is constant. Division in 

 k X . The division algorithm allows us to divide a 

nonzero polynomial into another: let f  and g  be 

polynomials in  k X with 0;g   then there exist 

unique polynomials  ,q r k X  such that 

f qg r   with either 0r   or deg r  < deg g . 

Moreover, there is an algorithm for deciding whether 

( )f g , namely, find r and check whether it is 

zero. Moreover, the Euclidean algorithm allows to 

pass from finite set of generators for an ideal in 

 k X to a single generator by successively replacing 

each pair of generators with their greatest common 

divisor. 

 

 (Pure) lexicographic ordering (lex). Here 

monomials are ordered by lexicographic(dictionary) 

order. More precisely, let 1( ,... )na a   and 

1( ,... )nb b   be two elements of 
n ; then  

   and  X X  (lexicographic ordering) if, 

in the vector difference    , the left most 

nonzero entry is positive. For example,  

 
2 3 4 3 2 4 3 2;XY Y Z X Y Z X Y Z  . Note that 

this isn’t quite how the dictionary would order them: 

it would put XXXYYZZZZ  after XXXYYZ . 

Graded reverse lexicographic order (grevlex). Here 

monomials are ordered by total degree, with ties 

broken by reverse lexicographic ordering. Thus, 

   if i ia b  , or i ia b   and in 

   the right most nonzero entry is negative. For 

example:  
4 4 7 5 5 4X Y Z X Y Z  (total degree greater) 

5 2 4 3 5 4 2,XY Z X YZ X YZ X YZ 
. 

 

Orderings on  1,... nk X X  . Fix an ordering on the 

monomials in  1,... nk X X . Then we can write an 

element f  of  1,... nk X X  in a canonical fashion, 

by re-ordering its elements in decreasing order. For 

example, we would write 
2 2 3 2 24 4 5 7f XY Z Z X X Z   

  
as 

3 2 2 2 25 7 4 4 ( )f X X Z XY Z Z lex    
  

or 
2 2 2 3 24 7 5 4 ( )f XY Z X Z X Z grevlex   

  

Let  1,..., na X k X X

   , in decreasing 

order: 

0 1

0 1 0 1 0..., ..., 0f a X X
 

         

  

Then we define. 

 The multidegree of 
f

 to be multdeg(
f

)= 

0 ;  

 The leading coefficient of 
f

to be LC(
f

)=

0
a ; 

 The leading monomial of  
f

to be LM(
f

) 

= 0X


; 

 The leading term of 
f

to be LT(
f

) = 

0

0
a X



   

For the polynomial 
24 ...,f XY Z   the 

multidegree is (1,2,1), the leading coefficient is 4, the 

leading monomial is 
2XY Z , and the leading term is  

24XY Z . The division algorithm in  1,... nk X X . 

Fix a monomial ordering in 
2 . Suppose given a 

polynomial f  and an ordered set 1( ,... )sg g  of 

polynomials; the division algorithm then constructs 

polynomials 1,... sa a  and r   such that 

1 1 ... s sf a g a g r      Where either 0r   or 

no monomial in r  is divisible by any of 

1( ),..., ( )sLT g LT g   Step 1: If 1( ) | ( )LT g LT f , 

divide 1g  into f  to get 

 1 1 1 1

1

( )
, ,...,

( )
n

LT f
f a g h a k X X

LT g
   

 

If 1( ) | ( )LT g LT h , repeat the process until  

1 1 1f a g f    (different 1a ) with 1( )LT f  not 

divisible by 1( )LT g . Now divide 2g  into 1f , and 

so on, until 1 1 1... s sf a g a g r      With 

1( )LT r  not divisible by any 1( ),... ( )sLT g LT g   

Step 2: Rewrite 1 1 2( )r LT r r  , and repeat Step 1 

with 2r  for f : 

1 1 1 3... ( )s sf a g a g LT r r       (different 

'ia s  )   Monomial ideals. In general, an ideal a  

will contain a polynomial without containing the 

individual terms of the polynomial; for example, the 
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ideal 
2 3( )a Y X   contains 

2 3Y X but not 
2Y  

or 
3X . 

 

DEFINITION 1.5. An ideal a  is monomial if 

c X a X a 

     

 all   with 0c  .  

PROPOSITION 1.3. Let a be a monomial ideal, and 

let  |A X a  . Then A satisfies the 

condition , ( )nA           

And a  is the k -subspace of  1,..., nk X X  

generated by the ,X A  . Conversely, of A  is a 

subset of 
n  satisfying   , then the k-subspace  

a  of  1,..., nk X X  generated by  |X A   is 

a monomial ideal. 

 

PROOF.  It is clear from its definition that a 

monomial ideal a  is the  k -subspace of 

 1,..., nk X X
  

generated by the set of monomials it contains. If 

X a 
 and 

 1,..., nX k X X 
 . 

   

If a permutation is chosen uniformly and at random 

from the !n  possible permutations in ,nS  then the 

counts 
( )n

jC  of cycles of length j  are dependent 

random variables. The joint distribution of 
( ) ( ) ( )

1( ,..., )n n n

nC C C  follows from Cauchy’s 

formula, and is given by 

( )

1 1

1 1 1
[ ] ( , ) 1 ( ) , (1.1)

! !

j

nn
cn

j

j j j

P C c N n c jc n
n j c 

 
    

 
 

  

for 
nc  .  

 

Lemma1.7 For nonnegative integers 

1,...,

[ ]( )

11 1

,

1
( ) 1 (1.4)

j

j

n

m
n n n

mn

j j

jj j

m m

E C jm n
j  

     
             

 

  

Proof.   This can be established directly by exploiting 

cancellation of the form 
[ ] !/ 1/ ( )!jm

j j j jc c c m    

when ,j jc m  which occurs between the 

ingredients in Cauchy’s formula and the falling 

factorials in the moments. Write jm jm . 

Then, with the first sum indexed by 

1( ,... ) n

nc c c    and the last sum indexed by  

1( ,..., ) n

nd d d    via the correspondence 

,j j jd c m   we have  

[ ] [ ]( ) ( )

1 1

[ ]

: 1 1

11 1

( ) [ ] ( )

( )
1

!

1 1
1

( )!

j j

j

j

j j

j j

n n
m mn n

j j

cj j

m
nn

j

j c
c c m for all j j j j

n nn

jm d
d jj j j

E C P C c c

c
jc n

j c

jd n m
j j d

 

  

 

 
  

 

 
  

 

 
   

 

 

  

  

  

This last sum simplifies to the indicator 1( ),m n  

corresponding to the fact that if 0,n m   then 

0jd   for ,j n m   and a random permutation 

in n mS   must have some cycle structure 

1( ,..., )n md d  . The moments of 
( )n

jC   follow 

immediately as 

 ( ) [ ]( ) 1 (1.2)n r r

jE C j jr n    

We note for future reference that (1.4) can also be 

written in the form  

[ ] [ ]( )

11 1

( ) 1 , (1.3)j j

n n n
m mn

j j j

jj j

E C E Z jm n
 

     
      

    
 

  

Where the 
jZ  are independent Poisson-distribution 

random variables that satisfy ( ) 1/jE Z j   

 

The marginal distribution of cycle counts provides a 

formula for the joint distribution of the cycle counts 

,n

jC  we find the distribution of 
n

jC  using a 

combinatorial approach combined with the inclusion-

exclusion formula. 

 

Lemma  1.8.   For 1 ,j n   

 
[ / ]

( )

0

[ ] ( 1) (1.1)
! !

k ln j k
n l

j

l

j j
P C k

k l

 



     

Proof.     Consider the set I  of all possible cycles of 

length ,j  formed with elements chosen from 

 1,2,... ,n  so that 
[ ]/j jI n . For each ,I   

consider the ―property‖ G  of having ;  that is,  

G is the set of permutations nS   such that   is 

one of the cycles of .  We then have 

( )!,G n j   since the elements of  1,2,...,n  

not in   must be permuted among themselves. To 

use the inclusion-exclusion formula we need to 

calculate the term ,rS  which is the sum of the 

probabilities of the r -fold intersection of properties, 

summing over all sets of r distinct properties. There 
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are two cases to consider. If the r properties are 

indexed by r cycles having no elements in common, 

then the intersection specifies how rj  elements are 

moved by the permutation, and there are 

( )!1( )n rj rj n   permutations in the intersection. 

There are 
[ ] / ( !)rj rn j r  such intersections. For the 

other case, some two distinct properties name some 

element in common, so no permutation can have both 

these properties, and the r -fold intersection is empty. 

Thus 

[ ]

( )!1( )

1 1
1( )

! ! !

r

rj

r r

S n rj rj n

n
rj n

j r n j r

  

  
  

Finally, the inclusion-exclusion series for the number 

of permutations having exactly k  properties is 

,

0

( 1)l

k l

l

k l
S

l




 
  

 
   

Which simplifies to (1.1) Returning to the original 

hat-check problem, we substitute j=1 in (1.1) to 

obtain the distribution of the number of fixed points 

of a random permutation. For 0,1,..., ,k n   

( )

1

0

1 1
[ ] ( 1) , (1.2)

! !

n k
n l

l

P C k
k l





     

and the moments of 
( )

1

nC  follow from (1.2) with 

1.j   In particular, for  2,n   the mean and 

variance of 
( )

1

nC are both equal to 1. The joint 

distribution of 
( ) ( )

1( ,..., )n n

bC C  for any 1 b n   

has an expression similar to (1.7); this too can be 

derived by inclusion-exclusion. For any 

1( ,..., ) b

bc c c    with ,im ic   

1

( ) ( )

1

...

01 1

[( ,..., ) ]

1 1 1 1
( 1) (1.3)

! !

i i

b

i

n n

b

c lb b
l l

l withi ii i
il n m

P C C c

i c i l

 

 

 



     
     

     


 

  

The joint moments of the first b  counts 
( ) ( )

1 ,...,n n

bC C  can be obtained directly from (1.2) 

and (1.3) by setting 1 ... 0b nm m      

 

The limit distribution of cycle counts 

It follows immediately from Lemma 1.2 that for each 

fixed ,j  as ,n  

( ) 1/[ ] , 0,1,2,...,
!

k
n j

j

j
P C k e k

k


     

So that 
( )n

jC converges in distribution to a random 

variable jZ  having a Poisson distribution with mean 

1/ ;j  we use the notation 
( )n

j d jC Z  where 

(1/ )j oZ P j   to describe this. Infact, the limit 

random variables are independent. 

 

Theorem 1.6   The process of cycle counts converges 

in distribution to a Poisson process of   with 

intensity 
1j . That is, as ,n   

( ) ( )

1 2 1 2( , ,...) ( , ,...) (1.1)n n

dC C Z Z

  

Where the , 1,2,...,jZ j   are independent Poisson-

distributed random variables with  
1

( )jE Z
j

   

Proof.  To establish the converges in distribution one 

shows that for each fixed 1,b   as ,n   

 
( ) ( )

1 1[( ,..., ) ] [( ,..., ) ]n n

b bP C C c P Z Z c     

 

Error rates 

The proof of Theorem says nothing about the rate of 

convergence. Elementary analysis can be used to 

estimate this rate when 1b  . Using properties of 

alternating series with decreasing terms, for 

0,1,..., ,k n   

( )

1 1

1 1 1
( ) [ ] [ ]

! ( 1)! ( 2)!

1

!( 1)!

nP C k P Z k
k n k n k

k n k

    
   


 

   

 

It follows that  
1 1

( )

1 1

0

2 2 1
[ ] [ ] (1.11)

( 1)! 2 ( 1)!

n nn
n

k

n
P C k P Z k

n n n

 




    

  
   

Since 
1

1

1 1 1
[ ] (1 ...) ,

( 1)! 2 ( 2)( 3) ( 1)!

e
P Z n

n n n n n



     
    

  

We see from (1.11) that the total variation distance 

between the distribution 
( )

1( )nL C  of 
( )

1

nC  and the 

distribution 1( )L Z  of 1Z
 

 

B. Key Share Object 

A key share object (KSO) allows Gatekeepers to 

verify the authenticity of key shares and share-shares 

without using digital signatures. For each single share 

di and its share-shares di1, di2, ..., din, the hash value 

is computed and added to the KSO.  

 

Thus, the KSO consists of (n + 1) × (n + 1) hash 

values: 

h(d1), h(d1,1), ..., h(d1,n) 
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... 

h(dn), h(dn,1), ..., h(dn,n) 

 

Hash values of key shares di and their share-shares 

di,j in a KSO. 

 

where h is a cryptographically secure hash function. 

Additionally, the KSO also contains the appropriate 

evaluation points 1, ..., n. The KSO can be seen as a 

simple lookup table for the authenticity of 

cryptographic keys. 

C. Gatekeep Signature Agreement 

The overall idea is that Gatekeepers agree on the next 

set of Gatekeepers and then mutually sign the new 

witness object using the previous protocols. We 

assume that there exist two black box protocols: 

LeavingGatekeeper() determines which Gatekeepers 

are removed while JoiningGatekeeper() elects joining 

entities. One possible implementation for those 

protocols is that Gatekeepers agree on each joining 

and leaving entity using a consensus protocol. For 

simplicity, the signature agreement protocol assumes 

the standard communication model with a complete 

(fully connected) synchronous network of pairwise 

authentic channels among the Gatekeepers. A 

broadcast channel is not required since broadcast can 

be achieved by sending a message to each entity 

individually. Each Gatekeeper proceeds as follows: 

 

1. Replace all entities in Obj!G using 

LeavingGatekeeper() and JoiningGatekeeper() to 

obtain Obj0!G and set vc0! = vc! +  

2. Compute ID0!G = h (PKG, vc0!, IDGroup). 

3. Create a partial signature: Obj0sig,I G := h 

�Obj0!G_di (mod n0). 

4. SendToAll([ID0!G, h(Obj0!G),Obj0sig,i!G ]). 

5. Wait for > t messages having an equal identifier 

and hash for the new witness object and which carry a 

correct partial signature. 

6. Compute the full signature Obj0sig !G and store 

the witness object in the object store. 

7. Initialize the joining entities with PKO, PKG, 

IDGroup, vc! and their share-share of the signature 

key. The joining Gatekeepers will have to start the 

synchronization protocol. 

8. Store vc0! as new witness object counter. 

Establish the asymptotics of 
( )( )n

nA C     under 

conditions 0( )A  and 01( ),B  where 

 
'

( ) ( )

1 1

( ) 0 ,

i i

n n

n ij

i n r j r

A C C
    

  
 

and 
''( / ) 1 ( )g

i i idr r O i     as ,i   for 

some 
' 0.g    We start with the expression 

'

'
( ) 0

0

0

1

1

[ ( ) ]
[ ( )]

[ ( ) ]

1 (1 ) (1.1)

i i

n m
n

m

i

i n i
r j r

P T Z n
P A C

P T Z n

E
ir



 

  






 
  

 


  

  

'

0

1 1

1

1 '

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.2)

n

i

P T Z n

d
i d i d
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 


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and 

  

'

0

1 1

1

1

1,2,7

[ ( ) ]

exp [log(1 ) ]

1 ( ( )) (1.3)

n

i

P T Z n

d
i d i d

n

O n n


 



 







 
   

 



  

Where 
 
'

1,2,7
( )n  refers to the quantity derived from 

'Z . It thus follows that 
( ) (1 )[ ( )]n d

nP A C Kn    

for a constant K , depending on Z  and the 
'

ir  and 

computable explicitly from (1.1) – (1.3), if 

Conditions 0( )A  and 01( )B  are satisfied and if 

'

( )g

i O i    from some 
' 0,g   since, under these 

circumstances, both 
 

1 '

1,2,7
( )n n  and  

 
1

1,2,7
( )n n  tend to zero as .n  In particular, 

for polynomials and square free polynomials, the 

relative error in this asymptotic approximation is of 

order 
1n
 if 

' 1.g    

 

For 0 / 8b n   and 0 ,n n  with 0n   

 7,7

( ( [1, ]), ( [1, ]))

( ( [1, ]), ( [1, ]))

( , ),

TV

TV

d L C b L Z b

d L C b L Z b

n b





 

  

Where  7,7
( , ) ( / )n b O b n   under Conditions 

0 1( ), ( )A D  and 11( )B
 
Since, by the Conditioning 

Relation, 

0 0( [1, ] | ( ) ) ( [1, ] | ( ) ),b bL C b T C l L Z b T Z l  
 

  

It follows by direct calculation that 
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0 0

0

0

( ( [1, ]), ( [1, ]))

( ( ( )), ( ( )))

max [ ( ) ]

[ ( ) ]
1 (1.4)

[ ( ) ]
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TV b b
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

 

  
 

 



 

  

Suppressing the argument Z  from now on, we thus 

obtain  

( ( [1, ]), ( [1, ]))TVd L C b L Z b
 

 

0
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0

0
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n

b bn bn

s
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 

 
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 


 
[ /2]
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/2 0

[ ] [ ]
n
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r n r

P T r P T r
 

      

 [ /2]

0

0 0

[ /2]

0 0

0 [ /2] 1

[ ] [ ]
[ ]

[ ]

[ ] [ ] [ ] / [ ]

n
bn bn

b

s n

n n
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P T n

P T r P T s P T n s P T n



  

    
 



     



 

 The first sum is at most 
1

02 ;bn ET
the third is 

bound by 

 

0 0
/2

10.5(1)

( max [ ]) / [ ]

2 ( / 2, ) 3
,

[0,1]

b n
n s n

P T s P T n

n b n

n P





 
 


  

 

 

[ /2] [ /2]
2

0 010.8
0 0

10.8 0

3 1
4 ( ) [ ] [ ]

[0,1] 2

12 ( )

[0,1]

n n

b b

r s

b

n
n n P T r P T s r s

P

n ET

P n












 

 



  



 

  

Hence we may take 

 

 

 

10.81

07,7

10.5(1)

6 ( )
( , ) 2 ( ) 1

[0,1]

6
( / 2, ) (1.5)

[0,1]

b

n
n b n ET Z P

P

n b
P
















  

  
  



  

 

Required order under Conditions 0 1( ), ( )A D  and 

11( ),B  if ( ) .S    If not,    10.8
n

 can be 

replaced by 
   10.11

n
in the above, which has the 

required order, without the restriction on the ir  

implied by ( )S   . Examining the Conditions  

0 1( ), ( )A D  and 11( ),B it is perhaps surprising to find 

that 11( )B  is required instead of just 01( );B  that is, 

that we should need 1

2
( )a

ill
l O i 


   to hold 

for some 1 1a  . A first observation is that a similar 

problem arises with the rate of decay of 1i  as well. 

For this reason, 1n  is replaced by 1n


. This makes it 

possible to replace condition 1( )A  by the weaker 

pair of conditions 0( )A and 1( )D in the eventual 

assumptions needed for 
   7,7

,n b  to be of order 

( / );O b n   the decay rate requirement of order 
1i  

 

is shifted from 1i  itself to its first difference. This is 

needed to obtain the right approximation error for the 

random mappings example. However, since all the 

classical applications make far more stringent 

assumptions about the 1, 2,i l   than are made in 

11( )B . The critical point of the proof is seen where 

the initial estimate of the difference
( ) ( )[ ] [ 1]m m

bn bnP T s P T s    . The factor 

 10.10
( ),n  which should be small, contains a far tail 

element from 1n


 of the form 1 1( ) ( ),n u n   which 

is only small if 1 1,a   being otherwise of order 

11( )aO n  
 for any 0,   since 2 1a   is in any 

case assumed. For / 2,s n  this gives rise to a 

contribution of order  11
( )

aO n   
 in the estimate of 

the difference [ ] [ 1],bn bnP T s P T s     which, 

in the remainder of the proof, is translated into a 

contribution of order 11
( )

aO tn   
for differences of 

the form [ ] [ 1],bn bnP T s P T s     finally 

leading to a contribution of order 1abn  
 for any 

0   in  7.7
( , ).n b  Some improvement would 

seem to be possible, defining the function g  by 

   ( ) 1 1 ,
w s w s t

g w
  

    differences that are of the 

form [ ] [ ]bn bnP T s P T s t     can be directly 

estimated, at a cost of only a single contribution of 

the form 1 1( ) ( ).n u n   Then, iterating the cycle, 

in which one estimate of a difference in point 
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probabilities is improved to an estimate of smaller 

order, a bound of the form  

112[ ] [ ] ( )a

bn bnP T s P T s t O n t n          

for any 0   could perhaps be attained, leading to a 

final error estimate in order  11( )aO bn n    for 

any 0  , to replace 
 7.7

( , ).n b  This would be of 

the ideal order ( / )O b n for large enough ,b  but 

would still be coarser for small .b   

 

 

With b and n  as in the previous section, we wish to 

show that  

 

1

0 0

7,8

1
( ( [1, ]), ( [1, ])) ( 1) 1

2

( , ),

TV b bd L C b L Z b n E T ET

n b





   



  

Where 
 

121 1

7.8
( , ) ( [ ])n b O n b n b n        for 

any 0   under Conditions 0 1( ), ( )A D  and 

12( ),B with 12 . The proof uses sharper estimates. 

As before, we begin with the formula  
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The approximation in (1.2) is further simplified by 

noting that  
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and then by observing that  
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Combining the contributions of (1.2) –(1.3), we thus 

find tha
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The quantity  7.8
( , )n b is seen to be of the order 

claimed under Conditions 0 1( ), ( )A D  and 12( )B , 

provided that ( ) ;S    this supplementary 

condition can be removed if 
 10.8

( )n
 is replaced by 

 10.11
( )n

   in the definition of  7.8
( , )n b , has the 

required order without the restriction on the ir  

implied by assuming that ( ) .S   Finally, a direct 

calculation now shows that 

0 0

0 0

0 0

[ ] [ ]( )(1 )

1
1
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b b

r s

b b
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E T ET




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D. Key Tree Object 

For each authorized reader ri, the owner creates a 

fresh symmetric key SKi which is encrypted with the 

reader’s public key PKri . The encrypted secret keys 

form the leaves of the tree. For each pair [SKi, 

SKi+1], i mod 2 = 0, the owner recursively creates a 

new symmetric key SKi,i+1 which is encrypted 

twice, once with the left key SKi and once with the 

right key SKi+1. The two encryptions form the 

content of the parent node of both child nodes. Unlike 

ordinary binary trees, the root itself has a parent node 

which forms the final root of the tree. That node 

consists of the encrypted private key PK−1 R .  

 

illustrates this layout which is similar to the 

VersaKey [66] group key management scheme. 

 

The root nodes contain the keys that only authorized 

readers can access. To change reader membership, 

the owner must access certain nodes of the tree. He 

uses a symmetric backdoor key SKO that is added to 

the KTO encrypted with the owner’s PKO. The 

owner encrypts the symmetric keys of all nodes using 

SKO and adds the encryptions to the respective 

nodes. Additionally to the owner’s backdoor key, the 

root’s symmetric key SK0R belonging to the previous 

tree is added and encrypted with the secret key SKR 

of the current root node whereas ID0K TO references 

the previous KTO. This allows access to the 

symmetric key at the root of the previous version 

using only one symmetric decryption. The KTO 

contains a version counter vcKTO that is incremented 

on each update. The key tree object is filed to the 

object store and its self-verifying identifier IDKTO is 

sent to the Gatekeepers during their initialization or 

on each KTO update. Gatekeepers only accept the 

update if vcKTO is higher than the last one and 

signed by the owner.  
Example 1.0.  Consider the point 

(0,...,0) nO   . For an arbitrary vector r , the 

coordinates of the point x O r   are equal to the 

respective coordinates of the vector 
1: ( ,... )nr x x x  and 

1( ,..., )nr x x . The vector 

r such as in the example is called the position vector 

or the radius vector of the point x  . (Or, in greater 

detail: r  is the radius-vector of x  w.r.t an origin O). 

Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the 

―standard origin‖.   Let us summarize. We have 

considered 
n  and interpreted its elements in two 

ways: as points and as vectors. Hence we may say 

that we leading with the two copies of  :n  
n = 

{points},      
n = {vectors}  

Operations with vectors: multiplication by a number, 

addition. Operations with points and vectors: adding a 

vector to a point (giving a point), subtracting two 

points (giving a vector). 
n treated in this way is 

called an n-dimensional affine space. (An ―abstract‖ 

affine space is a pair of sets , the set of points and the 

set of vectors so that the operations as above are 

defined axiomatically). Notice that vectors in an 

affine space are also known as ―free vectors‖. 

Intuitively, they are not fixed at points and ―float 

freely‖ in space. From 
n considered as an affine 

space we can precede in two opposite directions: 
n  

as an Euclidean space   
n as an affine space   

n as a manifold.Going to the left means introducing 

some extra structure which will make the geometry 

richer. Going to the right means forgetting about part 

of the affine structure; going further in this direction 

will lead us to the so-called ―smooth (or 

differentiable) manifolds‖. The theory of differential 

forms does not require any extra geometry. So our 

natural direction is to the right. The Euclidean 

structure, however, is useful for examples and 

applications. So let us say a few words about it: 

 

Remark 1.0.  Euclidean geometry.  In 
n  

considered as an affine space we can already do a 

good deal of geometry. For example, we can consider 

lines and planes, and quadric surfaces like an 

ellipsoid. However, we cannot discuss such things as 

―lengths‖, ―angles‖ or ―areas‖ and ―volumes‖. To be 

able to do so, we have to introduce some more 
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definitions, making 
n a Euclidean space. Namely, 

we define the length of a vector 
1( ,..., )na a a  to 

be  

1 2 2: ( ) ... ( ) (1)na a a     

After that we can also define distances between 

points as follows: 

( , ) : (2)d A B AB


  

One can check that the distance so defined possesses 

natural properties that we expect: is it always non-

negative and equals zero only for coinciding points; 

the distance from A to B is the same as that from B to 

A (symmetry); also, for three points, A, B and C, we 

have ( , ) ( , ) ( , )d A B d A C d C B   (the ―triangle 

inequality‖). To define angles, we first introduce the 

scalar product of two vectors 

 
1 1( , ) : ... (3)n na b a b a b     

Thus ( , )a a a  . The scalar product is also 

denote by dot: . ( , )a b a b , and hence is often 

referred to as the ―dot product‖ . Now, for nonzero 

vectors, we define the angle between them by the 

equality 

( , )
cos : (4)

a b

a b
    

The angle itself is defined up to an integral 

multiple of 2  . For this definition to be consistent 

we have to ensure that the r.h.s. of (4) does not 

exceed 1 by the absolute value. This follows from the 

inequality 
2 22( , ) (5)a b a b   

known as the Cauchy–Bunyakovsky–Schwarz 

inequality (various combinations of these three names 

are applied in different books). One of the ways of 

proving (5) is to consider the scalar square of the 

linear combination ,a tb  where t R . As  

( , ) 0a tb a tb    is a quadratic polynomial in t  

which is never negative, its discriminant must be less 

or equal zero. Writing this explicitly yields (5). The 

triangle inequality for distances also follows from the 

inequality (5). 

 

Example 1.1.    Consider the function ( ) if x x  

(the i-th coordinate). The linear function 
idx  (the 

differential of 
ix  ) applied to an arbitrary vector h  is 

simply 
ih .From these examples follows that we can 

rewrite df  as 

1

1
... , (1)n

n

f f
df dx dx

x x

 
  
 

  

which is the standard form. Once again: the partial 

derivatives in (1) are just the coefficients (depending 

on x ); 
1 2, ,...dx dx  are linear functions giving on an 

arbitrary vector h  its coordinates 
1 2, ,...,h h  

respectively. Hence 

  

1

( ) 1
( )( )

... , (2)

hf x

n

n

f
df x h h

x

f
h

x


   







 

 

Theorem   1.7.     Suppose we have a parametrized 

curve ( )t x t  passing through 
0

nx   at 0t t  

and with the velocity vector 0( )x t   Then  

0 0 0

( ( ))
( ) ( ) ( )( ) (1)

df x t
t f x df x

dt
   

  

 

Proof.  Indeed, consider a small increment of the 

parameter 0 0:t t t t , Where 0t  . On 

the other hand, we have  

0 0 0( ) ( ) ( )( ) ( )f x h f x df x h h h      for 

an arbitrary vector h , where ( ) 0h   when

0h  . Combining it together, for the increment of 

( ( ))f x t   we obtain 

0 0

0

0

( ( ) ( )

( )( . ( ) )

( . ( ) ). ( )

( )( ). ( )

f x t t f x

df x t t t

t t t t t t

df x t t t

 

    

 

  

    

        

    

     

For a certain ( )t   such that ( ) 0t   when 

0t   (we used the linearity of 0( )df x ). By the 

definition, this means that the derivative of ( ( ))f x t  

at 0t t  is exactly 0( )( )df x  . The statement of the 

theorem can be expressed by a simple formula: 

1

1

( ( ))
... (2)n

n

df x t f f
x x

dt x x

 
  
 

  

 

To calculate the value Of df  at a point 0x  on a 

given vector   one can take an arbitrary curve 

passing Through 0x  at 0t  with   as the velocity 

vector at 0t and calculate the usual derivative of 

( ( ))f x t  at 0t t . 

 

Theorem 1.8.  For functions , :f g U   ,

,nU     
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( ) (1)

( ) . . (2)

d f g df dg

d fg df g f dg

  

 
   

 

Proof. Consider an arbitrary point 0x  and an 

arbitrary vector   stretching from it. Let a curve 

( )x t  be such that 0 0( )x t x  and 0( )x t  .  

Hence 

0( )( )( ) ( ( ( )) ( ( )))
d

d f g x f x t g x t
dt

     

at 0t t  and  

0( )( )( ) ( ( ( )) ( ( )))
d

d fg x f x t g x t
dt

    

at 0t t  Formulae (1) and (2) then immediately 

follow from the corresponding formulae for the usual 

derivative Now, almost without change the theory 

generalizes to functions taking values in  
m  instead 

of  . The only difference is that now the differential 

of a map : mF U    at a point x  will be a linear 

function taking vectors in 
n  to vectors in 

m

(instead of  ) . For an arbitrary vector | ,nh    

 

( ) ( ) ( )( )F x h F x dF x h     

+ ( ) (3)h h   

Where ( ) 0h    when  0h . We have  

1( ,..., )mdF dF dF  and  

1

1

1 1

11

1

...

....

... ... ... ... (4)

...

n

n

n

nm m

n

F F
dF dx dx

x x

F F

dxx x

dxF F

x x

 
  
 

  
     

   
      
 
  

  

 

In this matrix notation we have to write vectors as 

vector-columns. 

 

Theorem 1.9. For an arbitrary parametrized curve 

( )x t  in 
n , the differential of a   map 

: mF U    (where 
nU   ) maps the velocity 

vector ( )x t  to the velocity vector of the curve 

( ( ))F x t  in :m   

.( ( ))
( ( ))( ( )) (1)

dF x t
dF x t x t

dt
     

 

Proof.  By the definition of the velocity vector, 

.

( ) ( ) ( ). ( ) (2)x t t x t x t t t t      

  

Where ( ) 0t    when 0t  . By the 

definition of the differential,  

( ) ( ) ( )( ) ( ) (3)F x h F x dF x h h h   

  

Where ( ) 0h   when 0h . we obtain  

.

.

. .

.

( ( )) ( ( ). ( ) )

( ) ( )( ( ) ( ) )

( ( ) ( ) ). ( ) ( )

( ) ( )( ( ) ( )

h

F x t t F x x t t t t

F x dF x x t t t t

x t t t t x t t t t

F x dF x x t t t t





  



       

      

       

     



   

 

For some ( ) 0t    when 0t  . This 

precisely means that 
.

( ) ( )dF x x t  is the velocity 

vector of ( )F x . As every vector attached to a point 

can be viewed as the velocity vector of some curve 

passing through this point, this theorem gives a clear 

geometric picture of dF  as a linear map on vectors. 

   

Theorem 1.10 Suppose we have two maps 

:F U V  and : ,G V W  where 

, ,n m pU V W      (open domains). Let 

: ( )F x y F x . Then the differential of the 

composite map :GoF U W  is the composition 

of the differentials of F  and :G   

( )( ) ( ) ( ) (4)d GoF x dG y odF x   

 

Proof.   We can use the description of the differential 

.Consider a curve ( )x t  in 
n  with the velocity 

vector 
.

x . Basically, we need to know to which 

vector in  
p it is taken by ( )d GoF . the curve 

( )( ( ) ( ( ( ))GoF x t G F x t . By the same theorem, 

it equals the image under dG  of the Anycast Flow 

vector to the curve ( ( ))F x t  in 
m . Applying the 

theorem once again, we see that the velocity vector to 

the curve ( ( ))F x t is the image under dF of the 

vector 
.

( )x t . Hence 
. .

( )( ) ( ( ))d GoF x dG dF x   

for an arbitrary vector 
.

x  . 
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Corollary 1.0.    If we denote coordinates in 
n by 

1( ,..., )nx x  and in 
m by 

1( ,..., )my y , and write 

1

1

1

1

... (1)

... , (2)

n

n

n

n

F F
dF dx dx

x x

G G
dG dy dy

y y

 
  
 

 
  
 

  

Then the chain rule can be expressed as follows: 

1

1
( ) ... , (3)m

m

G G
d GoF dF dF

y y

 
  
 

  

Where 
idF  are taken from (1). In other words, to get 

( )d GoF  we have to substitute into (2) the 

expression for 
i idy dF  from (3). This can also be 

expressed by the following matrix formula: 

  

1 1 1 1

11 1

1 1

.... ....

( ) ... ... ... ... ... ... ... (4)

... ...

m n

np p m m

m n

G G F F

dxy y x x

d GoF

dxG G F F

y y x x

     
         
    
          

       

 

 

i.e., if dG  and dF  are expressed by matrices of 

partial derivatives, then ( )d GoF  is expressed by 

the product of these matrices. This is often written as  

 

1 11 1

11

1 1

1 1

1

1

........

... ... ... ... ... ...

... ...

....

... ... ... , (5)

...

mn

p p p p

n m

n

m m

n

z zz z

y yx x

z z z z

x x y y

y y

x x

y y

x x

    
        
  
  

     
         

  
 
  

 
 
  

 
  

 

Or 

1

, (6)
im

a i a
i

z z y

x y x

 



  


  
   

Where it is assumed that the dependence of 
my  

on 
nx  is given by the map F , the dependence 

of 
pz  on 

my  is given by the map ,G  and 

the dependence of  
pz on 

nx is given by 

the composition GoF .  

 

Definition 1.6.  Consider an open domain 
nU   . 

Consider also another copy of 
n , denoted for 

distinction 
n

y , with the standard coordinates 

1( ... )ny y . A system of coordinates in the open 

domain U  is given by a map : ,F V U  where 

n

yV    is an open domain of 
n

y , such that the 

following three conditions are satisfied :  

(1) F  is smooth; 

(2) F  is invertible; 

(3) 
1 :F U V   is also smooth 

 

The coordinates of a point x U  in this system are 

the standard coordinates of 
1( ) n

yF x   

In other words,  
1 1: ( ..., ) ( ..., ) (1)n nF y y x x y y   

Here the variables 
1( ..., )ny y  are the ―new‖ 

coordinates of the point x   

 

Example  1.2.     Consider a curve in 
2  specified 

in polar coordinates as  

( ) : ( ), ( ) (1)x t r r t t     

We can simply use the chain rule. The map 

( )t x t  can be considered as the composition of 

the maps  ( ( ), ( )),( , ) ( , )t r t t r x r    . 

Then, by the chain rule, we have  
. . .

(2)
dx x dr x d x x

x r
dt r dt dt r




 

   
    

   
   

Here 
.

r  and 
.

  are scalar coefficients depending on 

t , whence the partial derivatives ,x x
r 

 
 

  are 

vectors depending on point in 
2 . We can compare 

this with the formula in the ―standard‖ coordinates: 
. . .

1 2x e x e y  . Consider the vectors   

,x x
r 

 
 

. Explicitly we have  

(cos ,sin ) (3)

( sin , cos ) (4)

x

r

x
r r

 

 








 



  

From where it follows that these vectors make a basis 

at all points except for the origin (where 0r  ). It is 

instructive to sketch a picture, drawing vectors 

corresponding to a point as starting from that point. 

Notice that  ,x x
r 

 
 

 are, respectively, the 
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velocity vectors for the curves ( , )r x r    

0( )fixed   and 0( , ) ( )x r r r fixed  
. We can conclude that for an arbitrary curve given in 

polar coordinates the velocity vector will have 

components 
. .

( , )r   if as a basis we take 

: , : :r
x xe e

r  
  
 

  

. . .

(5)rx e r e      

A characteristic feature of the basis ,re e  is that it is 

not ―constant‖ but depends on point. Vectors ―stuck 

to points‖ when we consider curvilinear coordinates. 

 

Proposition  1.3.   The velocity vector has the same 

appearance in all coordinate systems. 

Proof.        Follows directly from the chain rule and 

the transformation law for the basis ie .In particular, 

the elements of the basis ii
xe

x



 (originally, a 

formal notation) can be understood directly as the 

velocity vectors of the coordinate lines 
1( ,..., )i nx x x x   (all coordinates but 

ix  are 

fixed). Since we now know how to handle velocities 

in arbitrary coordinates, the best way to treat the 

differential of a map : n mF    is by its action 

on the velocity vectors. By definition, we set 

0 0 0

( ) ( ( ))
( ) : ( ) ( ) (1)

dx t dF x t
dF x t t

dt dt
   

Now 0( )dF x  is a linear map that takes vectors 

attached to a point 
0

nx   to vectors attached to 

the point ( ) mF x    

1

1

1 1

11

1

1

...

...

( ,..., ) ... ... ... ... , (2)

...

n

n

n

m

nm m

n

F F
dF dx dx

x x

F F

dxx x

e e

dxF F

x x

 
  
 

  
     
  
      
 
  

  

In particular, for the differential of a function we 

always have  

1

1
... , (3)n

n

f f
df dx dx

x x

 
  
 

  

Where 
ix  are arbitrary coordinates. The form of the 

differential does not change when we perform a 

change of coordinates. 

 

Example  1.3   Consider a 1-form in 
2  given in the 

standard coordinates: 

 

A ydx xdy     In the polar coordinates we will 

have cos , sinx r y r   , hence 

cos sin

sin cos

dx dr r d

dy dr r d

  

  

 

 
  

Substituting into A , we get 

2 2 2 2

sin (cos sin )

cos (sin cos )

(sin cos )

A r dr r d

r dr r d

r d r d

   

   

   

  

 

  

  

Hence  
2A r d  is the formula for A  in the polar 

coordinates. In particular, we see that this is again a 

1-form, a linear combination of the differentials of 

coordinates with functions as coefficients. Secondly, 

in a more conceptual way, we can define a 1-form in 

a domain U  as a linear function on vectors at every 

point of U : 
1

1( ) ... , (1)n

n         

If 
i

ie  , where ii
xe

x



. Recall that the 

differentials of functions were defined as linear 

functions on vectors (at every point), and  

( ) (2)i i i

j jj

x
dx e dx

x


 
  

 
    at 

every point x .  

 

Theorem  1.9.   For arbitrary 1-form   and path  , 

the integral 



  does not change if we change 

parametrization of   provide the orientation remains 

the same. 

Proof: Consider 
'

( ( )),
dx

x t
dt

  and  

'

'
( ( ( ))),

dx
x t t

dt
  As 

'

'
( ( ( ))),

dx
x t t

dt
 =

'

' '
( ( ( ))), . ,

dx dt
x t t

dt dt
   

 

E. Asymptotic Runtime for Key Tree Object 

The time for operations must be analyzed separately 

for reader addition, reader removal and access to the 

tree. Because the time for asymmetric decryption 

PKDec and encryption PKEnc can differ, those 

operations are listed separately while secret-key de- 

and encryptions are summed up in SKOP . SKGen 

denotes the number of symmetric-key creations and 

PKGen counts the number of public-key generations. 

The creation of a full key tree object with mnew 

readers requires 2mnew secret-key generations. The 

encryption of the tree needs 4mnew − 3 symmetric-
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key operations and mnew public-key encryptions. In 

the average case, it is assumed that a constant number 

c of readers is removed from the group which is 

independent of the total number of readers m in the 

tree. The assumption is realistic since it is rarely the 

case that the number of removals is proportional to 

the total number of entities in the tree. The 

complexity of a remove operation is logarithmic in 

the number of secret-key generations and operations 

(for details see [39]). Moreover, only one public-key 

generation for the root private key and one public-key 

decryption for the owner’s backdoor key SKO is 

needed. Table 1 depicts the runtime in O-notation. 

Accessing a single KTO depends on the number of 

readers m of the group. Access to one key tree 

requires one public-key decryption for the leaf and 

logm secret-key decryptions to infer the private key. 

The final root of the tree as depicted in accessing k 

KTOs requires only adding a factor of k to the 

number of symmetric-key decryptions because of the 

backward reference within a KTO, if assuming that 

the version difference between two used trees is 

constant. Since k >> logm, the approximation O(k + 

logm) O(k) holds. If counting the number of public-

key decryptions to infer the symmetric blocks keys, 

one has to add O(k) for PKDec and SKDec when 

accessing k blocks. 

V. ALGORITHM 

Heuristic algorithm for the computation of the 

minimum cost delegation chains for the certificates 

presented by a client. The algorithm receives as input 

the set Cert of certificates presented by a client during 

a session, the set T T of trust tables, authorities Auth, 

authority classes AC, delegation certificates Deleg 

Certs, and authority certificates Authority Certs. For 

each certificate cert in Cert, the algorithm first calls 

function CHECKCORRECTNESS that performs all 

the noncryptographic controls (e.g., expiration time) 

on cert. If function CHECKCORRECTNESS returns 

true for each trust table TT in T T such that cert is 

compatible with TT (i.e., cert contains all the 

attributes required by TT and cert satisfies all the 

check conditions specified in the definition of TT), 

the algorithm calls function Satisfy with parameters 

cert and TT. Function Satisfy returns a set ver list of 

certificates forming the delegation chains (if any) 

supporting all the common attributes in cert and TT. 

If all the certificates in ver list are valid, the algorithm 

inserts a tuple in trust table TT whose attributes 

values are extracted from the corresponding attributes 

in cert; the algorithm terminates returning an error 

message, otherwise. We now describe how function 

Satisfy works. Function Satisfy is the core component 

of our algorithm. The function takes as input a 

certificate cert and an entity E, which may either be a 

trust table or an authority class compatible with cert. 

It returns a set of certificates that compose the 

delegation chains supporting all the attributes in 

cert.attributes∩Attributes(TT), and rooted at an 

authority (or authority class) that is trusted with 

respect to TT. If such delegation chains do not exist, 

the function returns an empty set of certificates. 

Function Satisfy first checks whether cert.issuer is a 

valid authority with respect to entity E. Three cases 

may occur: (1) cert.issuer appears in the except clause 

of E (i.e., cert.issuer is in Except(E)), and the function 

terminates, returning an empty set of certificates; (2) 

cert.issuer appears in the authoritative clause of E 

(i.e., cert.issuer is in Authoritative(E)), and the 

function terminates, returning cert as the unique 

certificate composing the delegation chain; or (3) 

cert.issuer is a member of an authority class in the 

authoritative clause of E, and the delegation chains 

proving this membership are stored in variable 

cert.issuer.ac ver list(E). To verify whether cert.issuer 

is a member of an authority class in the authoritative 

clause of E, function Satisfy calls function 

Let p  be a rational prime and let ( ).pK    We 

write   for p  or this section. Recall that K  has 

degree ( ) 1p p    over .  We wish to show 

that  .KO    Note that   is a root of 1,px   

and thus is an algebraic integer; since K  is a ring 

we have that   .KO   We give a proof without 

assuming unique factorization of ideals. We begin 

with some norm and trace computations. Let j  be an 

integer. If j is not divisible by ,p  then 
j  is a 

primitive 
thp  root of unity, and thus its conjugates 

are 
2 1, ,..., .p   

 Therefore 

 
2 1

/ ( ) ... ( ) 1 1j p

K pTr            

  

If p  does divide ,j  then 1,j   so it has only the 

one conjugate 1, and  / ( ) 1j

KTr p    By 

linearity of the trace, we find that  
2

/ /

1

/

(1 ) (1 ) ...

(1 )

K K

p

K

Tr Tr

Tr p

 

 

   

  

 



 

We also need to compute the norm of 1  . For 

this, we use the factorization  

 

1 2

2 1

... 1 ( )

( )( )...( );

p p

p

p

x x x

x x x  

 



    

   
  

Plugging in 1x   shows that  

 
2 1(1 )(1 )...(1 )pp          

Since the (1 )j  are the conjugates of (1 ),

this shows that  / (1 )KN p   The key result 
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for determining the ring of integers KO  is the 

following. 

 

LEMMA 1.9 

  (1 ) KO p      

Proof.  We saw above that p  is a multiple of 

(1 )  in ,KO  so the inclusion 

(1 ) KO p   
 
is immediate.  Suppose now 

that the inclusion is strict. Since (1 ) KO  is 

an ideal of   containing p  and p is a maximal 

ideal of  , we must have  (1 ) KO   
 

Thus we can write  1 (1 )     

For some .KO   That is, 1   is a unit in .KO   

 

COROLLARY 1.1   For any ,KO   

/ ((1 ) ) .KTr p      

PROOF.       We have  

 

/ 1 1

1 1 1 1

1

1 1

((1 ) ) ((1 ) ) ... ((1 ) )

(1 ) ( ) ... (1 ) ( )

(1 ) ( ) ... (1 ) ( )

K p

p p

p

p

Tr        

       

     



 





     

    

    



 

Where the i  are the complex embeddings of K  

(which we are really viewing as automorphisms of 

K ) with the usual ordering.  Furthermore, 1 j  is 

a multiple of 1   in KO  for every 0.j   Thus 

/ ( (1 )) (1 )K KTr O      
Since the trace is 

also a rational integer. 

 

PROPOSITION 1.4  Let p  be a prime number and 

let | ( )pK    be the 
thp  cyclotomic field. Then  

[ ] [ ] / ( ( ));K p pO x x     Thus 

21, ,..., p

p p  
 is an integral basis for KO . 

PROOF.    Let   KO   and write 

2

0 1 2... p

pa a a   

      With .ia   

Then 

 

2

0 1

2 1

2

(1 ) (1 ) ( ) ...

( )p p

p

a a

a

    

  



     

 
  

By the linearity of the trace and our above 

calculations we find that  / 0( (1 ))KTr pa    

We also have  

/ ( (1 )) ,KTr p    so 0a    Next consider 

the algebraic integer  

1 3

0 1 2 2( ) ... ;p

pa a a a    

      This is 

an algebraic integer since 
1 1p    is. The same 

argument as above shows that 1 ,a   and 

continuing in this way we find that all of the ia  are 

in  . This completes the proof. 

  

Example 1.4   Let K   , then the local ring 
( )p  

is simply the subring of   of rational numbers with 

denominator relatively prime to p . Note that this 

ring   
( )p is not the ring 

p of p -adic integers; to 

get  
p one must complete 

( )p . The usefulness of 

,K pO  comes from the fact that it has a particularly 

simple ideal structure. Let a be any proper ideal of 

,K pO  and consider the ideal Ka O  of .KO  We 

claim that 
,( ) ;K K pa a O O     That is, that a  is 

generated by the elements of a  in .Ka O  It is 

clear from the definition of an ideal that 

,( ) .K K pa a O O   To prove the other inclusion, 

let   be any element of a . Then we can write 

/    where KO   and .p   In 

particular, a   (since / a    and a  is an 

ideal), so KO   and .p   so .Ka O    

Since 
,1/ ,K pO   this implies that 

,/ ( ) ,K K pa O O      as claimed.We can 

use this fact to determine all of the ideals of , .K pO  

Let a  be any ideal of ,K pO and consider the ideal 

factorization of Ka O in .KO  write it as 

n

Ka O p b   For some n  and some ideal ,b  

relatively prime to .p  we claim first that 

, , .K p K pbO O  We now find that 

  , , ,( ) n n

K K p K p K pa a O O p bO p O      Since 

, .K pbO  Thus every ideal of ,K pO  has the form 

,

n

K pp O  for some ;n  it follows immediately that 

,K pO is noetherian. It is also now clear that ,

n

K pp O

is the unique non-zero prime ideal in ,K pO . 

Furthermore, the inclusion , ,/K K p K pO O pO  

Since , ,K p KpO O p   this map is also 

surjection, since the residue class of ,/ K pO    

(with KO   and p  ) is the image of 
1 

 in 



International Journal of Computer & Organization Trends –Volume 2 Issue 6 November to December 2012 

ISSN: 2249-2593                                  http://www.ijcotjournal.org                              Page 79 

/ ,K pO  which makes sense since   is invertible in 

/ .K pO  Thus the map is an isomorphism. In 

particular, it is now abundantly clear that every non-

zero prime ideal of 
,K pO is maximal.  To show 

that 
,K pO is a Dedekind domain, it remains to show 

that it is integrally closed in K . So let K   be a 

root of a polynomial with coefficients in  
, ;K pO  

write this polynomial as  
11 0

1 0

...m mm

m

x x
 

 





    

With i KO   and .i K pO   Set 

0 1 1... .m      Multiplying by 
m  we find that 

  is the root of a monic polynomial with 

coefficients in .KO  Thus ;KO   since ,p   

we have 
,/ K pO    . Thus  

,K pO is 

integrally close in .K   

 

COROLLARY 1.2.   Let K  be a number field of 

degree n  and let   be in KO  then 

'

/ /( ) ( )K K KN O N     

PROOF.  We assume a bit more Galois theory than 

usual for this proof. Assume first that /K   is 

Galois. Let   be an element of ( / ).Gal K   It is 

clear that /( ) / ( ) ;K KO O      since 

( ) ,K KO O   this shows that 

' '

/ /( ( ) ) ( )K K K KN O N O    . Taking the 

product over all ( / ),Gal K    we have 

' '

/ / /( ( ) ) ( )n

K K K K KN N O N O     Since 

/ ( )KN   is a rational integer and KO  is a free  -

module of rank ,n    

// ( )K K KO N O   Will have order / ( ) ;n

KN   

therefore 

 
'

/ / /( ( ) ) ( )n

K K K K KN N O N O     

This completes the proof.  In the general case, let L  

be the Galois closure of K  and set [ : ] .L K m   

 
Codeflow : CheckClasses . For each authority class in 

Authoritative(E), CheckClasses recursively calls 

function Satisfy and returns the delegation chains (if 

any) with minimum cost, proving that cert.issuer is a 

member of the authority class. Such delegation chains 

are stored in variable cert.issuer.ac ver list(E). 

Furthermore, CheckClasses inserts a virtual 

delegation certificate representing the computed 

delegation chains. Intuitively, this virtual delegation 

certificate represents the fact that cert.issuer is trusted 

to produce certificates for attributes in Attributes(E), 

since it is a member of an authority class listed in 

Authoritative(E). After the analysis of cert.issuer, 

function Satisfy checks the delegation flag of all the 

authorities and classes in the authoritative clause of 

E. If all such authorities and authority classes have 

the delegation flag set to false, function Satisfy 

terminates by returning the set cert.issuer.ac ver 

list(E) of certificates. In fact, if delegation chains 

cannot be considered, cert is a valid certificate with 

respect to E only if it has been directly issued by an 

authority that belongs to an authority class in the 

authoritative clause of E. If at least an authority or a 

class in the authoritative clause of E has the 

delegation flag set to true, function Satisfy searches a 

set of delegation chains that reaches an authority (or a 

class) in the authoritative clause of TT and that 

supports all the common attributes between cert and 

TT. To this purpose, the set Deleg Certs of delegation 

certificates (also including virtual delegation 

certificates) is seen as a delegation graph, where there 

is a node for each issuer and subject of the delegation 

certificates, and there is an edge for each delegation 

certificate going from the issuer of the certificate to 

its subject. Each edge is labeled with a pair 

attributes,cost, where attributes is the set of attributes 

asserted by the corresponding delegation certificate 

and cost is the cost for verifying the certificate. The 

process of finding delegation chains consists in (i) 

finding supporting chains for the attributes considered 

(function FindChain); and (ii) removing redundant 

supporting chains (function BuildVerificationList). 

We assume that the delegation graph is acyclic and 

that the subgraphs of Deleg Certs necessary for 

verifying different certificates do not have common 

edges (i.e., common certificates). Function FindChain 

adopts a Dijkstra-like approach to determine, for each 

attribute that appears both in cert and in TT, the 

minimum cost path reaching cert from an authority 

(which belongs to an authority class) in the 

authoritative clause of TT with the delegation flag set 

to true. We note that function FindChain invokes 

function CheckClasses to verify whether the 

authorities along the computed paths belong to a 

trusted authority class. Function 

BuildVerificationList analyzes the paths computed by 

function FindChain and removes possible 

redundancies. The nonredundant delegation chains 

obtained by function Satisfy are finally returned. 

Consider a certificate cert issued by authority 

Hospital (H), with subject Doctor (D), and certifying 

attributes number (n), project (p), and specialty (s). 

The set of authority certificates Authority Certs and 

the set of delegation certificates Deleg Certs available 

in the system and involved in the processing of cert. 

It is easy to see that cert is compatible with the trust 

table Physician , and since the issuer of cert is not an 

authority listed directly in the except or authoritative 

clause of Physician, we need to check the existence of 
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delegation chains supporting attributes {n, p, s}. 

Here, the authorities directly listed in the authoritative 

clause of Physician are represented through a double 

circle. Dotted edges and nodes represent the 

delegation certificates and authorities needed for 

verifying whether an authority belongs to an authority 

class. The curly edge represents certificate cert. 

Function Satisfy first calls procedure CheckClasses to 

verify whether H is a member of the ClassHospital 

authority class directly listed in the authoritative 

clause of Physician. Function CheckClasses adds a 

virtual delegation certificate, where the issuer is the 

virtual authority C, the subject is H, the attributes are 

those mentioned in the Physician trust table, and the 

cost is the sum of the costs associated with the dotted 

edges. Function Satisfy then calls n, G→ M → H; p, 

C → R→ H; and s, G→ S → H.We note that function 

FindChain while searching for the path supporting 

attribute p, adds another virtual delegation certificate 

where the issuer is again the virtual authority C; the 

subject is R; the attributes are those mentioned in the 

Physician trust table; and the cost is the sum of the 

costs associated with the dotted edge from U to R. 

Function Satisfy finally calls function 

BuildVerificationList, which removes the redundant 

delegation chain G → S → H supporting attribute s. 

In fact, path G → M → H supports both attributes n 

and s. The certificates that need to be verified are 

therefore the ones along paths C → R → H and G → 

M → H, and the path represented by virtual 

certificate C → R(i.e.,U → R).  
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