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Abstract— Service-oriented Architectures (SOA) facilitate
the dynamic and seamless integration of services offered by
different service providers which in addition can be located
in different trust domains. Especially for business
integration scenarios, Federated Identity Management
emerged as a possibility to propagate identity information
as security assertions across company borders in order to
secure the interaction between different services. Although
this approach guarantees scalability regarding the
integration of identity-based services, it exposes a service
provider to new security risks. These security risks result
from the complex trust relationships within a federation. In
a federation the authentication of a user is not necessarily
performed within the service provider’s domain, but can be
performed in the user’s local domain. Consequently, the
service provider has to rely on authentication results
received from a federation partner to enforce access control.
This implies that the quality of the authentication process is
out of control by the service provider and therefore
becomes a factor which needs to be considered in the
access control step. In order to guarantee a designated level
of security, the quality of the authentication process should
be part of the access control decision. To ease this process,
we propose in this paper a method to rate authentication
information by a level of trust which describes the strength
of an authentication method. Additionally, in order to
support the concept of a two-factor authentication, we also
present a mathematical model to calculate the trust level
when combining two authentication methods. Quantitative
Trust Management (QTM) provides a dynamic
interpretation of authorization policies for access control
decisions based on upon evolving reputations of the entities
involved. QuanTM, a QTM system, selectively combines
elements from trust management and reputation
management to create a novel method for policy evaluation.
Trust management, while effective in managing access with
delegated credentials (as in PolicyMaker and KeyNote),
needs greater flexibility in handling situations of partial
trust. Reputation management provides a means to quantify
trust, but lacks delegation and policy enforcement. This
paper reports on QuanTM’s design decisions and novel
policy evaluation procedure. A representation of quantified
trust relationships, the trust dependency graph, and a
sample QuanTM application specific to the KeyNote trust
management language, are also proposed.
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l. INTRODUCTION

Creating software which is flexible and highly
customizable to adapt to fast changing business needs
has moved into the main focus of software
developers. Enterprises demand a seamless

communication between applications independent
from the platform on which they run and even across
domain boundaries. Service-oriented Architectures
and XML Web Services have been designed to meet
these concerns, allowing a flexible integration of
services provided by independent business partners.
However, the seamless and straightforward
integration of cross-organisational services conflicts
with the need to secure and control access to these
services. The traditional approach to restrict service
access is based on user authentication performed by
the service provider itself, cf. [18]. Since credentials
(e.g. user name and password) needed to access a
service are issued and managed by the service
provider, this approach is referred to as isolated
identity management as stated in [13]. It requires
service users to register a digital identity at each
involved service provider and to authenticate
separately for each service access. Federated Identity
Management as a new identity model provides
solutions for these problems by enabling the
propagation of identity information to services
located in different trust domains. It enables service
users to access all services in a federation using the
same identification data. Several frameworks and
standards for Federated Identity Management have
been specified (e.g. WS-Federation [1] and Liberty
Identity Web Services Framework (ID-WSF) 2.0
[31]). The key concept in a federation is the
establishment of trust whereby all parties in a
federation are willing to rely on asserted claims about
a digital identity such as SAML assertions [24]. As
Service-oriented Architectures move from an isolated
identity management scheme to a federated identity
management, service providers are exposed to new
risks. In a federation the authentication of a user is
not necessarily performed within the service
provider’s domain, but can be done within the user’s
local domain. Consequently, the service provider has
to trust the authentication performed by the user’s
identity provider. In terms of security this is a critical
situation since authorization and access control of the
service are highly dependent on the authentication
results. A weak authentication jeopardises the
dependent service’s security by increasing the risk
that a user can personate as someone else and gain
improper access. OASIS considers this as a serious
risk [23] and recommends to agree on a common trust
level in terms of policies, procedures and
responsibilities to ensure that a relying party can trust
the processes and methods used by the identity
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provider. Jgsang et. al. [13] describe the usage of
such a common trust level as a symmetric trust
relationship, since all parties are exposed to an equal
risk in the case of failure. As opposed to this, having
different trust requirements and mechanisms is
referred to as an asymmetric trust relationship. They
argue that asymmetric trust relationships are hard to
establish, since the parties are exposed to different
risks in the case of failure. However, with regard to
complex SOA — that might be based on the dynamic
selection of services and service providers — defining
and enforcing a common trust level s
disadvantageous: A symmetric trust relationship
between the providers in a federation would require a
trust level, which is sufficient for the service with the
strongest  authentication  requirements.  These
requirements, however, might not be necessary for all
services within the federation and might change if
this service is dynamically replaced. Consequently,
users are forced to authenticate by a predefined strong
authentication ~ method, even though  weak
authentication would be sufficient for the service they
want to access. Likewise, when users are fixed to a
predefined authentication method according to the
specified trust level, access will be denied even
though the user might be able to verify his identity in
an even more trusted way. Altogether, there is a
growing demand for more flexibility in authentication
processes in SOA. To achieve this flexibility, a way
to rate the trust relationship between identity provider
and service provider is needed in order to restrict the
service access based on an individual trust level. The
general idea of classifying authentication methods
according to their level of trustworthiness is not new.
Especially in the field of e-Government, various
countries have launched e-authentication initiatives in
order to secure access to critical e-Government
services [26, 11, 17, 5]. All of these initiatives have in
common that they define authentication trust levels —
mostly four different levels — in a way that covers the
main use cases, reaching from “no security needed”
to “critical application”. For each level, requirements
for the authentication process are defined. This
means, authentication methods are always assigned to
predefined levels, but not the other way around. To
provide authentication in a truly flexible manner, we
present in this paper:

* A formal definition of trust levels to quantify the
trust that is established by using a particular
authentication method. This definition is globally
applicable and not restricted to a specific use case
setting requiring specific bootstrapping algorithms.
This way, the meaning of a trust level based on our
approach is clear and can be applied to any use case
without the need to know any further set up or
environment parameters.

* A mathematical model to combine different
authentication methods as used in a two-factor

authentication and to calculate their combined
authentication trust level.

* An example calculation that demonstrates the
applicability of our mathematical model to existing
authentication methods.

The emergence of distributed topologies and
networked services has resulted in applications that
are stored, maintained, and accessed remotely via a
client/server model. The advantages of such a setup
are many, but the challenges of access control and
identity management must be addressed. Trust
management and reputation management are two
differing approaches to the problem. While effective
with regard to explicit declarations, trust management
lacks  applicability = when relationships are
characterized by uncertainty. Thus, trust management
is useful in enforcing existing trust relationships but
ineffective in the formation of partially trusted ones.
Reputation management provides a means of
quantifying trust relationships dynamically, but lacks
access enforcement and delegation mechanisms. To
address this divide we introduce the notion of
Quantitative Trust Management (QTM), an approach
that merges concepts from trust and reputation
management. It (QTM) creates a method for
specifying both policy and reputation for dynamic
decision making in access control settings. A system
built upon QTM can not only enforce delegated
authorizations but also adapt its policy as partial
information becomes more complete. The output is a
quantitative trust value that expresses how much a
policy-based decision should be trusted given the
reputations of the entities involved. Further, to make
this novel concept concrete, we propose QuanTM, an
architecture for supporting QTM. In this application
of QuanTM, we use the KeyNote [8, 7] (KN) trust
management language and specification, due to its
well defined delegation logic and compliance system.
Summarily, a KN evaluator checks a user’s access
credentials against local policy to produce a
compliance value from a finite and predefined set of
values. The compliance value is then used to make
access decisions. KN allows principals to delegate
access rights to other principals without affecting the
resulting compliance value. Further, KN is
monotonic: If a given request evaluates to some
compliance value, adding more credentials or
delegations will not lower that value. We argue that
credentials should not be explicitly trusted, nor
should the trustworthiness of delegating principals be
ignored. Furthermore, the result of evaluation for a
given access request may need to be dynamic [9].
Service providers may find it desirable to arrive at
different opinions based on local constraints, policies,
and principals for the same request. In QuanTM, this
is easily expressed. We address these issues in the
following two ways: (1) It includes a means to
dynamically assign reputation to principals and their
relationships within a request, and (2) It provides a
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mechanism for combining this information to produce
a trust value. In QuanTM, a trust value (often a real
number) is used to represent the the trustworthiness
of a given compliance value and how it was reached.
Our proposed QuanTM architecture (see Fig. 1)
consists of three sub-systems:

1. Trust management consists of a trust language
evaluator that verifies requests meet policy
constraints, and a trust dependency graph (TDG)
extractor that constructs a graph representing trust
relationships.

2. Reputation management consists of two modules.
First, a reputation algorithm to dynamically produce
reputation values by combining feedback. These
reputation values weigh TDG edges. Second, a
reputation quantifier computes the trust value for a
given request by evaluating the weighted TDG.

3. Decision management is composed of a decision
maker that arrives at an access determination based
on a trust

value, context, and an application specific meta-
policy that encodes a cost-benefit analysis. The
design of QuanTM has been guided by the
requirement that the individual components will be
application specific, and thus, we have designed
QuanTM modularly. QuanTM provides a simple
interface by which different trust management
languages, reputation algorithms, and decision
procedures may be included. In this paper, we
propose a QuanTM design instance that utilizes the
KeyNote language and TNA-SL [11, 12] reputation
algorithm. This instance’s implementation and
evaluation is the subject of future work.

A. Background

Several approaches to define levels of trustworthiness
for authentication mechanisms have been proposed in
recent years indicating the importance of such a
concept. In the area of e-Government, the UK Office
of the e-Envoy has published a document called
“Registration and Authentication — e-Government
Strategy Framework Policy and Guideline” [26]. In
this document the initial registration process of a
person with the system as well as the authentication
process for a user’s engagement in an e-Government
transaction are defined. Depending on the severity of
consequences that might arise from unauthorized
access, four authentication trust levels are defined,
reaching from Level 0 for minimal damage up to
Level 3 for substantial damage. The IDABC [11]
(Interoperable Delivery of European eGovernment
Services to public Administrations, Businesses and
Citizens) is a similar project managed by the
European Commission. It publishes recommendations
and develops common solutions in order to improve
the electronic communication within the public
sector. Its Authentication Policy Document [7]
defines four assurance levels as well, which are also
associated with the potential damage that could be

caused. For each of the four levels the document
defines the requirements for the registration phase
and for the electronic authentication. The e-
Authentication Initiative is a major project of the e-
Government program of the US. The core concept is
a federated architecture with multiple e-Government
applications and credential providers. The intention is
that the e-Authentication Initiative provides an
architecture which delivers a uniform, government-
wide approach for authentication while leaving the
choice of concrete authentication technologies with
the individual government agencies. In this context,
the initiative has published a policy called
“EAuthentication Guidance for Federal Agencies” [5]
to assist agencies in determing the appropriate level
of identity assurance for electronic transactions. The
document defines four assurance levels, which are
based on the risks associated with an authentication
error. Which technical requirements apply for each
assurance level is described in a recommendation of
the National Institute of Standards and Technology
(NIST), which is called

Il.  PEER TO PEER OBJECT STORE MODEL

A P2P object store consists of nodes that hold objects
and interact with other nodes. Each node contributes a
part of its local storage to the object store. To achieve
availability, objects are replicated by using
information dispersal algorithms (IDA) [55, 54] such
as erasure codes [59], and by active, distributed
refreshing tasks. Besides, there are also mechanisms
to securely delete objects [9] and to ensure
consistency in case of network partitions or concurrent
operations [17]. Nodes and objects are addressed by a
globally unique identifier, henceforth called 1D, which
is translated to a network address by the overlay
network. Identifiers are published to a data structure
such as a Distributed Hash Table (DHT) [10, 21, 57,
65, 69] to allow efficient lookup and address
translation. In general, identifiers of objects in the
object store are self-verifying. Roughly speaking, this
means that the ID of an object or data block is equal to
the output of a hash function over the object’s data.
Storage nodes that are charged with holding blocks or
objects verify the object’s hash against its ID and deny
a store request in case of inconsistencies. As self-
verifying identifiers change on each modification,
they are not suitable for persistent reference to objects
or nodes. Non-self-verifying objects have an identifier
that does not depend on the object’s content, e.g. a
hash of a human-readable filename, and a public key.

The header object consists of the block and key tree
object identifiers and encrypted keys. An object
consists of two parts: a data part and a meta-data part
which contains information like object size, last
modification time, and so forth. The meta-data of
stored objects can be extended to also encompass
access control information yielding in the general
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object. It consists of an anchor and a header object. As
an exception, the anchor is not stored in the object
store, but resides locally on Gatekeepers. It consists of
a non-self-verifying IDObj that identifies the object
uniquely and a reference IDHOD] to the current header
object. To enable partial updates and to allow for
limited storage capacity on nodes, the stored object is
segmented into small blocks of e.g. 64kB size each,
which contain the actual encrypted data. The header
object consists of a list of references to these. For each
block, the header object also contains two entries for
the key information. Note that the key tree identifiers
IDKTO and key encrypting keys PKR can be distinct
for each entry.

We consider the following anycast field equations
defined over an open bounded piece of network and

Jor feature space Qc R® . They describe the
dynamics of the mean Security Key of each of p

node populations.
(%Hi)vi (t.r) =Z [, 3 OSIV =z (r,1).1) ~h )ldr

+17(r,1),
Vit,r)=4(tr)

t>0,1<i<p,
te[-T,0]

We give an interpretation of the various parameters

and functions that appear in (1), Q is finite piece of
nodes and/or feature space and is represented as an

open bounded set of R . The vector r and r
represent points in €. The function S: R — (0,1)
is the normalized sigmoid function:

1
2
l+e™? 2)

It describes the relation between the input rate V; of

S(z)=

population i as a function of the packets potential,
for example, V, =V, = S[o; (V; —h)]. We note V
the p— dimensional vector (Vl,...,Vp). The p
¢| ) i :]'1 L | p!

conditions, see below. We note ¢ the p—

function represent the initial

dimensional vector (d,...,4,). The p function

t -
I7,i=1,...,p, represent external factors from

I ext

other network areas. We note the p-—

. - ext ext

dimensional vector (l; ,...,Ip ). The pxp
matrix of functions J ={J;}; ;. , represents the
connectivity between populations i and ], see

below. The p real values h,i=1,..., p, determine

the threshold of activity for each population, that is,
the value of the nodes potential corresponding to 50%

of the maximal activity. The p real positive values
lof =1, P, determine the slopes of the sigmoids
at the origin. Finally the p real positive values

l,i=1..,p, determine the speed at which each

anycast node potential decreases exponentially
toward its real value. We also introduce the function

S:RP > RP, defined by
S(X) =[S(ay(x, —h)),...,S(c, —h,))], and the
diagonal px p matrix Ly =diag(l,,...,1,)-1s the
intrinsic dynamics of the population given by the

d
linear response of data transfer. (a +1,) is replaced
d ) ,
by (a+ |.)" to use the alpha function response. We

d
use (a+|i) for simplicity although our analysis

applies to more general intrinsic dynamics. For the
sg§e, of generality, the propagation delays are not
assumed to be identical for all populations, hence

they are described by a matrix r(r,F) whose

element Tij(l’,F) is the propagation delay between

population | at F and population i at r. The
reason for this assumption is that it is still unclear
from anycast if propagation delays are independent of
the populations. We assume for technical reasons that
—2
T is continuous, that is 7eC°(Q ,RPP).
Moreover packet data indicate that 7 is not a
symmetric function i.e., 7;(r,r) = z; (r,r), thus no

assumption is made about this symmetry unless
otherwise stated. In order to compute the righthand
side of (1), we need to know the node potential factor

V' on interval [T, 0]. The value of T is obtained
by considering the maximal delay:

max_ 7, (r,r) ©)

’Z' =
M j(r,re0xQ)

Hence we choose T =17,

A. Mathematical Framework

A convenient functional setting for the non-delayed
packet field equations is to wuse the space

F =L?(Q, R®) which is a Hilbert space endowed
with the usual inner product:

(V,u). :Zp:.[gvi(r)ui(r)dr o))

To give a meaning to (1), we defined the history

space C =C°([~,,0],F) with
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||¢||:5Upt€[,,m'o] ||¢(t)|||:, which is the Banach

phase space associated with equation (3). Using the
notation V,(6) =V (t+86),0 €[-7,,,0], we write
(1) as

V(1) =—LV 0 + LS(V,) + 1°(t), @)

V,=¢¢€C,
Where
L:C—>F,
> | ICNg(r,—(,r))dr
Is the linear continuous operator satisfying

||L1|| < ||J||L2(QZ’RPXP) . Notice that most of the papers

on this subject assume Q) infinite, hence requiring

T, = 0.

Proposition 1.0
satisfied.

1. Jel?(Q?,RPP),
2. The external current 1% € C°(R, F),

If the following assumptions are

3. 1€ CO(E, fo”),sup& 7<7,.
Then for any ¢ € C, there exists a unique solution
V e C!([0,0), F) "C°([-7,,, F) to (3)

Notice that this result gives existence on R, , finite-

time explosion is impossible for this delayed
differential equation. Nevertheless, a particular
solution could grow indefinitely, we now prove that
this cannot happen.

B. Boundedness of Solutions

A valid model of neural networks should only feature
bounded node asymptotic potentials.

Theorem 1.0 All the trajectories are ultimately

bounded by the same constant R if
I =max . [17®)], <.
Proof :Let us defined f:RxC—>R" as

e 1d|V];
FLV) = (-LV @)+ LSMV)+1™ OV M) =5 =
Wenote | =min,_, |,
V) <V O + (R, + DV,

Thus, if

QJ I & 2 de
vl 220 g < B

Let us show that the open route of F of center 0 and
radius R, By, is stable under the dynamics of

equation. We know that V (t) is defined for all
t>0s and that f <O on OBy, the boundary of

By . We consider three cases for the initial condition
V,. If "\/0”C <R and set

T =sup{t| Vs €[0,t],V(s) € B_R} Suppose that
T eR, then V(T) is defined and belongs to B_R,

the closure of By, because By is closed, in effect to
0By, we

d
VI k= TV <=5 <0

V(T) € 0B,. Thus we deduce that for £>0 and

also have

because

small enough, V(T +¢&) € B_R which contradicts the
definition of T. Thus T ¢ R and B_R is stable.
Because f<0 on 0Bg,V (0) € 0B, implies
that Vt >0,V (t) e B; .
V(0)eCB,

Finally we consider the

case Suppose that

Vt>0,V (1) ¢ By, then Vt >0, %”\/”2F <-26,

thus ”\/ (t)||F is monotonically decreasing and
reaches the value of R in finite time when V (1)
reaches OBg. This contradicts our assumption. Thus
T >0|V(T) € B,.

Proposition 1.1 : Let S and t be measured simple
functions on X+ for EcM, define

H(E)=[ sdu ®

Then ¢ isa measure on M .
jx(s+t)dy=jxsdu+jxtdy (2)
Proof : If S and if E,E,,... are disjoint members

of M whose union is E, the countable additivity of
M shows that
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#(E) = Zaﬂ(AﬁE) Za Zu(AﬂE)

—Zzaﬂ(AﬁE )= Z¢(E )

Also,¢(¢) =0, so that % is not identically co.
Next, let S be as before, let f,..., 5, be the

distinct values of tand let B; ={x:t(x) = 8} If
E,=ANB, the

Jo, (s+0dp=(e+ B )uu(Ey)

and ,[E.. Sd,u+J‘E td u = o u(Ey) + B u(Ey)

Thus (2) holds with E;

the disjoint union of the sets
E; @<i<nl<j<m), the first half of our
proposition implies that (2) holds.

in place of X . Since X is

Theorem 1.1: If K is a compact set in the plane
whose complement is connected, if f is a

continuous complex function on K which is
holomorphic in the interior of , and if &> 0, then
there exists a polynomial P  such that
|f(Z) = P(Z)| < ¢ forall zeK If the interior of

K is empty, then part of the hypothesis is vacuously
satisfied, and the conclusion holds for every

f&eC(K) . Note that K need to be connected.
Proof: By Tietze’s theorem, f can be extended to a

continuous function in the plane, with compact
support. We fix one such extension and denote it

again by f . For any 6 >0, let @(5) be the
supremum of the numbers |f(22)— f(Zl)| Where
Z, and Z, are subject to the condition |Z2 —Zl| <9J.

Since f is have
Igl_rga)(é')zo

be fixed. We shall prove that there is a polynomial
P such that

uniformly continous, we

(1) From now on, & will

| f(z)- P(Z)| <10,000 w(0) (zeK)  (2)
By (1), this proves the theorem. Our first objective
is the construction of a function ®£C_(R?), such
that for all z

£ (2)-D(2)| < 0(5), 3)

(0D)(2)] < 2“’(5) @)

And

() - ﬂ Mol:dn (=&+in)

Where X is the set of all points in the support of @
whose distance from the complement of K does not
O . (Thus X contains no point which is “far within”
K'.) We construct @ as the convolution of f with a

smoothing function A. Put a(r) =0 if r > &, put

2

a(r) = 52 2 (0<r<9), (6
And define
A(2) =a(|z)) (7

For all complex Z . It is clear that AsC_(R?). We
claim that

j A=1, ©)
j oA =0, 9)
H oA 155 5 10

The constants are so adjusted in (6) that (8) holds.
(Compute the integral in polar coordinates), (9) holds
simply because A has compact support. To compute
(10), express OA in polar coordinates, and note that

P 50=0

oA/ __4
or =%
Now define

®(2) = [[ f(z-¢)Adédn = [[ AG-O)f (Q)dgdn @D

Since f and A have compact support, so does @ .
Since

D(z)- f(2)
= [[Tf(z-0)- f@IAE©)dedn (12)

And A({)=0 if [{]>6, (3) follows from (8).
The difference quotients of A converge boundedly
to the corresponding partial derivatives, since
AsC_(R?) . Hence the last expression in (11) may

be differentiated under the integral sign, and we
obtain
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(0®)(2) = [[ (A2 ¢) T (¢)dédy
= [[ fz- )M ¢dédn
= ([Tt @-0)- t@Nem))dédy

The last equality depends on (9). Now (10) and (13)
give (4). If we write (13) with @, and @ in place
of 0@, we see that @ has continuous partial
derivatives, if we can show that 0P =0 in G,

where G is the set of all zeK whose distance from

the complement of K exceeds 6. We shall do this
by showing that

O(2)=1(z) (z¢G);,  (14)

Note that of =0 in G, since f is holomorphic
there. Now if Z&G, then Z—¢ is in the interior of
K forall £ with |§’| < 0. The mean value property

for harmonic functions therefore gives, by the first
equation in (11),

()= a(ryrar [ f(z-re")do

- 27rf(z)_|'05a(r)rdr - f@[[A=f@

Forall Zz & G , we have now proved (3), (4), and (5)

The definition of X shows that X is compact and
that X can be covered by finitely many open discs

D,,...,D,, of radius 26, whose centers are not in
K. since S?—K is connected, the center of each
Dj can be joined to oo by a polygonal path in
S?— K. It follows that each D contains a compact

connected set Ej, of diameter at least 25, so that
S°—E.

j
with I =26 There are functions g;¢H (S* - E;)

is connected and so that KNE; =¢.

and constants bj so that the inequalities.

REa< o

Q01| <Ay
2=¢| " Jo—]

Holdfor z¢ E; and £ € D, if

Q(£.0)=0,()+(-b)gi@)  8)

Let O be the complement of E, ... UE,. Then
Q is an open set which contains K. Put

X, =XnND and

X;=(XNnDj)-(X,u..uX,), for
18k j<n,

Define

R(¢.2)=Q;(¢.2)  (¢eX;,2eQ) 19)
And

F(2) == [[@O)ORE Ddsdy  (20)

(z € Q)
Since,
F@) -~ [[e0))Q €. Ddcdn (2D
=L X

(18) shows that F is a finite linear combination of
the functions g; and gf. Hence FeH (). By
(20), (4), and (5) we have

B 2w(0)
F@-0@)|<—= jxﬂR(;,z)

15 1

———|dddn (£ Q) (22)

z2-¢
Observe that the inequalities (16) and (17) are valid
with R in place of Q; if £ ¢ X and z & C2.Now

fix z&Q., put £ =2+ pe"”, and estimate the
integrand in (22) by (16) if p <40, by (17) if

46 < p. The integral in (22) is then seen to be less
than the sum of

21" A (23)

0 5 p
And

2

2r ﬂpdp =2,00075. (24)

45 p
Hence (22) yields
|F(Z)—CD(Z)| <6,0000(0) (ze) (25)
since FeH(Q),KcQ, and S*—K s

connected, Runge’s theorem shows that F can be
uniformly approximated on K by polynomials.
Hence (3) and (25) show that (2) can be satisfied.
This completes the proof.
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Lemma 1.0 : Suppose fgC;(RZ), the space of all

continuously differentiable functions in the plane,
with compact support. Put

1/ o0 .0
825(&445} (1)

Then the following “Cauchy formula” holds:
1 ¢r(@f)(&)
f(z)=—=[[*22% g9
(1)=-= j ] £, ugdn
(§=¢&+in) 2)

Proof: This may be deduced from Green’s theorem.
However, here is a simple direct proof:

Put o(r,0) = f(z+re”), r>0, 6 real
If {=z+ re'?, the chain rule gives
o

@)©) =§ei9 [—+——}o(r,e>

0
3
or roé @

The right side of (2) is therefore equal to the limit, as
e —0, of

1=c2z( 0@ 1 0@
-z Ly -ZL dodr 4
IR @

For each I >0, @ is periodic in @, with period 27

. The integral of O¢@/0@ is therefore 0, and (4)
becomes

1 e2z 008(0 1 p2r
~ 2 (7 d6[" Ldr = 2 [T p(z,6)d6
27 %0 I or 27zjo v(£.9)

As &0, o(g,0) > f(z) uniformly.  This

gives (2)

If X“ea and Xﬁek[Xl,...Xn] , then

X*XP=X*""ca , and so A satisfies the
condition (*) . Conversely,

Qe X, dx)=>c,d, X7
aehA pell” a.p
and so if A satisfies (*) , then the subspace

generated by the monomials X, & € @, is an ideal.
The proposition gives a classification of the
monomial ideals in k[ X,,...X,]: they are in one to

one correspondence with the subsets A of [J"
satisfying (*) . For example, the monomial ideals in

k[X] are exactly the ideals (X"), n>1, and the

zero ideal (corresponding to the empty set A). We

(finite sumsS‘,

write <X“ | e A> for the ideal corresponding to

A (subspace generated by the X“,x € a).

LEMMA 1.1. Let S be a subset of [1". The the

ideal @ generated by X“,x € S is the monomial

ideal corresponding to
df

A={Bel"|B-ael", someaesS}
Thus, a monomial is in a if and only if it is divisible
by one ofthe X*,ax € S

PROOF. Clearly A satisfies (*)
aC<Xﬂ | B e A> . Conversely, if €A, then

B-—aecl" for
X?P =X“XP* ca. The last statement follows
from the fact that X“ | X” < B—ael". Let

Acl" satisfy (*) From the geometry of A, it
is clear that there is a finite set of elements
S= {al,...as} of A that

Az{ﬁeD "| -, €ll?, some «, eS}

and

some «aeS and

such

(The ai'S are the corners of A ) Moreover,
df
a:<X“ |a e A> is generated by the monomials

X%, a €8S.

g%FINITION 1.0. For a nonzero ideal a in
K[X ;.. X,]. we let (LT(a)) be the ideal
generated by

(LT(f)| f ca)

LEMMA 1.2 Let & be a nonzero ideal in
k[Xl,..., Xn]; then (LT (@)) is a monomial ideal,
and it equals (LT(9,),...,LT(g,)) for some
0y, 0, €4.

PROOF. Since (LT (@)) can also be described as

the ideal generated by the leading monomials (rather
than the leading terms) of elements of a.

THEOREM 1.2. Every ideal & in kK[ X ,..., X, ]
is finitely generated; precisely,
a:(gl,...,gs) where {;,..., §; are any elements

more

of @ whose leading terms generate LT (a)

PROOF.
algorithm, we

Let f €a. On applying the division
find
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f=a0,+..+a0,+r,

, Where either r =0 or no monomial occurring in it
any LT(g;) But

and

is  divisible by
r=f->agea
LT(r)eLT(a)=(LT(g,),.-,LT(9,)), implies

that every monomial occurring in I is divisible by
onein LT(g;). Thus r=0,and g €(9,,...,9,)-

therefore

DEFINITION 1.1 A finite  subset
S={0,,]....0,} of an ideal a is a standard (

(Grobner) bases for a if
(LT(9,),-..,LT(9,)) =LT(a). In other words, S

is a standard basis if the leading term of every
element of a is divisible by at least one of the leading

terms of the @, .

THEOREM 13  The ring K[X,,..,X,] is
Noetherian i.e., every ideal is finitely generated.

PROOF. For n=1 K[X] is a principal ideal
domain, which means that every ideal is generated by
single element. We shall prove the theorem by
induction on N . Note that the obvious map

KX, X S 1IX 1= KX, X, ] i an
isomorphism — this simply says that every polynomial
f in n variables X,,..X, can be expressed
uniquely as a polynomial in X with coefficients in

KX, X,

f(Xy, X, ) =8 (Xy, o X )X E Hota (X, X

Thus the next lemma will complete the proof

LEMMA 1.3. If A is Noetherian, then so also is
A X]
PROOF. For a polynomial

f(X)=gX"+a X" +..+a,
r is called the degree of f , and a, is its leading
coefficient. We call 0 the leading coefficient of the
polynomial 0.  Let & be an ideal in A[X]. The
leading coefficients of the polynomials in a form an
ideal @ in A, and since A is Noetherian, a will
be finitely generated. Let J,,...,d,, be elements of

a whose leading coefficients generate a ,and let r

aehA a#

ai,rek[Xl,._,,Xn] be the maximum degree of J;. Now let f ea, and

suppose f has degree S>Tr, say, f =aX®+...
Then aca , and so we can write

a=) ba, b eA,

a, =leading coefficient of g,
Now

f->bgX" ",
< deg(f) . By continuing in this way, we find that
f =1, mod(g,,...9,,) Wwith f a
polynomial of degree t <r Foreach d <r, let 3,

ri = deg(gi)’ has

degree

be the subset of A consisting of 0 and the leading
coefficients of all polynomials in @ of degree d; it

A . Let G4y Uy, be

polynomials of degree d whose leading coefficients
generate @, . Then the same argument as above

is again an ideal in

shows that any polynomial f0| in & of degree d can
fo=fis mOd(gd,l""gd,md)
With fdfl of degree <d—1. On applying this
remark repeatedly we find that
fie(9, 1109 am , 1-Yo1r--Gom ) Hence

be written

f, €(9,:--9,9 ra1r - Gram 1 ogree gO,mo)

and so the polynomials g,,..., Qo,m, generate a

IIl.  THREAT MODEL

Before explaining how access control is carried out in
a 2P system we first have to consider the power of
Mthe adversary and describe the assumptions we make
on the underlying storage system. We describe a P2P
storage system in terms of nodes. A node is correct in
an execution if it satisfies its specification throughout
the execution. A node that crashes or that deviates
from its specification is corrupt, malicious or
Byzantine. Nodes can be corrupted by an adversary.
The adversary’s intent is to read, modify or delete

ta, to change permissions, to prohibit read or write

erations, or to derive cryptographic keys. He is
assumed to be computationally bounded and thus
cannot break the underlying cryptographic schemes
such as decryption and encryption or digital
signatures  without knowing the appropriate
cryptographic keys. The adversary can learn all
information held by the corrupted nodes and can
eavesdrop on the communication among all nodes.
However, encrypted messages cannot be read and
messages whose integrity is protected cannot be
modified without this being detected. The adversary’s
capability to corrupt nodes is also limited for different
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types of nodes. In particular, owners are assumed to
behave correctly when involved in operations on their
own files. The adversary can corrupt up to t of the n
+3t + 1 Gatekeeper nodes. This assumption ensures
that Byzantine agreement protocols [5, 4, 15] can still
be executed correctly. We further assume that the
underlying P2P object store guarantees availability of
objects at any time. This means that an object can be
accessed any time after its creation. This can be
achieved through replication or information dispersal
algorithms (IDA). Moreover, we assume that each
write operation creates an entirely new object with a
new identifier. Therefore, it is not possible to
overwrite existing objects. We also impose that the
adversary is not capable of executing exhaustive
denial-of-service (DoS) attacks. In general, those kind
of attacks cannot be handled easily. This allows us to
focus on confidentiality and integrity of objects and
to perform access control in a secure way. Regarding
the communication among the nodes, we assume an
asynchronous model of time without any assumptions
about message transmission delays or execution rates
of nodes. Assume that all messages are signed by the
involved parties including challenge-response rounds
to guarantee freshness of messages.

A. Share Share Generation and Distribution

A joining Gatekeeper that replaces a leaving one
needs a share of the signing key PK—1 G to sign
future witness objects. The share di that was only
known to the leaving Gatekeeper needs to be
reconstructed, but the participating Gatekeepers must
not gain any information about di. During
initialization, the owner creates a (t+1, n)-secret
sharing of each share di and distributes share shares
among the initial Gatekeeper set. 8i 2 [1, n] the owner
proceeds as follows:

1. Let di be the share of Gatekeeper gi. The owner O
applies a (t+1, n)-secret sharing on di by choosing a
polynomial fi(x) of degree t such that di = fi(0).

2. O evaluates fi(x) at n points [_1, ..., _n] and obtains
share-shares [dil, ..., din] where dij = fi(j).

3. The owner creates a key share object (KSO) and
sends to each Gatekeeper gi the share-shares {d1i, ...,
dni} which are the ith share-share of each share along
with IDKSO.

Finally, every Gatekeeper gi is in possession of his
share di and a set of n share-shares dji 8j 2 [1, n].
Assume that Gatekeeper gi is no longer available and
the remaining Gatekeepers decided to transfer the
share di to a new entity gn+l with public key
PKgn+l. Each Gatekeeper gj 6= gi encrypts his
share-share dij with PKgn+1 and sends it to gn+1.
Additionally, they send dji which is the ith share-
share of their own share such that gn+1 can also help
initializing joining Gatekeepers. gn+1 can verify each
received share-share using the KSO and reconstruct
di by using Lagrange’s formula [1, 67, 64].

One of the great successes of category theory in
computer science has been the development of a
“unified theory” of the constructions underlying

denotational semantics. In the untyped A -calculus,
any term may appear in the function position of an
application. This means that a model D of the A -
calculus must have the property that given a term t
whose interpretation is deD, Also, the
interpretation of a functional abstraction like AX. X
is most conveniently defined as a function from
Dto D , which must then be regarded as an element

of D. Let w:[D - D] — D be the function that
picks out elements of D to represent elements of
[D - D] and ¢:D —)[D - D] be the function
that maps elements of D to functions of D. Since
w () is intended to represent the function f as an
element of D, it makes sense to require that
s (f)=1f, tat is wpoy=id,
Furthermore, we often want to view every element of
D as representing some function from D to D and

require that elements representing the same function
be equal — that is

w(p(d))=d
or
wog=id,

The latter condition is called extensionality. These
conditions together imply that ¢and1// are

inverses--- that is, D is isomorphic to the space of
functions from D to D that can be the interpretations

of functional abstractions: D E[D—) D] Let us

suppose we are working with the untyped
A—calculus, we need a solution ot the equation

D= A+[D— D],

predetermined domain containing interpretations for
elements of C. Each element of D corresponds to

either an element of A or an element of [D - D],

where A is some

with a tag. This equation can be solved by finding
least fixed points of the function

F(X)= A+[X - X] from domains to domains -
-- that is, finding domains X such that
X= A+[X - X], and such that for any domain

Y also satisfying this equation, there is an embedding
of Xto Y --- a pair of maps

f
X D Y
fR
Such that
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fRof =id,
foffcid,

Where f < g means that f approximatesg in

some ordering representing their information content.
The key shift of perspective from the domain-
theoretic to the more general category-theoretic
approach lies in considering F not as a function on
domains, but as a functor on a category of domains.
Instead of a least fixed point of the function, F.

Definition 1.3: Let K be a categoryand F : K — K
as a functor. A fixed point of F is a pair (A,a), where

A is a K-object and a:F(A)—> A is an

isomorphism. A prefixed point of F is a pair (Aa),
where A is a K-object and a is any arrow from F(A)
to A

Definition 1.4 : An @w—chain in a category K is a
diagram of the following form:

Recall that a cocone u of an @—chain A is a K-
object X and a collection of K -—arrows

{#4:D; —> X |i >0} such that g4 = 44,,0 f; for
all i>0. We sometimes write z:A— X as a
reminder of the arrangement of 4'S components
Similarly, a colimit z£: A — X is a cocone with the

property that if v:A — X is also a cocone then
there exists a unique mediating arrow K: X — X'
such that for all 1>0,,Vv,=koy, .
w—chains are

w—colimits. Dually, an ®® —chain in K is a
diagram of the following form:

Colimits of

sometimes referred to as

A=DyDiecDyrg—- Acone 1 X >A

of an @® —chain A is a K-object X and a
collection of K-arrows { ¢ : D |i >0} such that for

all 120, =Ff0u,,. An @ -limit of an

@” —chain A is a cone u:X — A with the

property that if v : X' — Ais also a cone, then there
exists a unique mediating arrow K : X — X such
that for all 1 >0, £ 0K =v; . We write L, (or just
L) for the distinguish initial object of K, when it has

one, and L—> A for the unique arrow from L to

each K-object A. It is also convenient to write
fy f,

A" =D,—3D,_>.....to denote all of A except
D, and f,. By analogy, 1 is {,ui |i21}. For the

images of A and u under F we write

F(f,) F(f) F(f2)

F(A)=F(D,)—sF(D)—yF(D,)—s.....
and F (1) = [F(14)]i 20}

We write F' for the i-fold iterated composition of F
that is,

Fo(f)=f,F(f)=F(f),F*(f)=F(F(f))
,etc. With these definitions we can state that every

monitonic function on a complete lattice has a least
fixed point:

Lemma 1.4. Let K be a category with initial object
L and let F:K — K be a functor. Define the

w—chainA by

1L>F(L) F(IL>F (1)) F2(ILL>F (L)
A=l 3 F() 5 F() >
If both £:A—D and F(u):F(A) > F(D)
are colimits, then (D,d) is an intial F-algebra, where
d:F(D)—>D is the mediating arrow from

F(x) tothe cocone p~

Theorem 1.4 Let a DAG G given in which each node
is a random variable, and let a discrete conditional
probability distribution of each node given values of
its parents in G be specified. Then the product of
these conditional distributions yields a joint
probability distribution P of the variables, and (G,P)
satisfies the Markov condition.

Proof. Order the nodes according to an ancestral
ordering. Let X, X,,.cunuu. X, be the resultant
ordering. Next define.

P(X1' XZ""'Xn) = P(Xn | pan) P(Xn—l | Pan—l)"'

P | pa)P(x,| pa,),
Where PA is the set of parents of X;of in G and

P(x, | pa) is the specified conditional probability

distribution. First we show this does indeed yield a
joint probability distribution. Clearly,

0<P(X,X,,..X,)<1 for all values of the

variables. Therefore, to show we have a joint
distribution, as the variables range through all their
possible values, is equal to one. To that end,
Specified conditional distributions are the conditional
distributions they notationally represent in the joint
distribution. Finally, we show the Markov condition
is satisfied. To do this, we need show for 1<k <n
that
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whenever
P(pa,)=0,if P(nd, | pa,) =0

and P(x |pa,) =0
then P(Xk |ndk’ pak) = P(Xk | pak)!
Where ND, is the set of nondescendents of X, of in
G. Since PA = ND, , we need only show
P(x,|nd,) = P(X, | pa,) . First for a given k ,

order the nodes so that all and only nondescendents
of X, precede X, in the ordering. Note that this

ordering depends on K, whereas the ordering in the
first part of the proof does not. Clearly then

ND, = {Xl, Xz,....Xk_l}
Let
D, = {Xk+11xk+2""'xn}

follows z
dy

We define the m™ cyclotomic field to be the field
Q[X]/ (@, (X)) Where @ (X) is the m"
cyclotomic polynomial. Q[X]/ (P, (X)) @, (X)
has degree @(m)over Q since @ (X) has degree

@(m). The roots of @ (X) are just the primitive

m™ roots of unity, so the complex embeddings of

Q[X] [ (D, (x))are simply the ¢(m) maps
o :Q[x]/ (@, (x) - C,
1<k =<m,(k,m)=1 where

k
O-k(x)zém’
being our fixed choice of primitive mth root of
&y being p

unity. Note that £X € Q(&, ) for every K; it follows

that Q(&.) =Q(EX) for all K relatively prime to
M. In particular, the images of the o; coincide, so

Q[X]/(CI)m (X)) is Galois over Q. This means that
we can write Q(&,) for Q[X]/(CDm (X)) without

much fear of ambiguity; we will do so from now on,
the identification being fm > X.One advantage of

this is that one can easily talk about cyclotomic fields
being extensions of one another,or intersections or
compositums; all of these things take place
considering them as subfield of C. We now
investigate some basic properties of cyclotomic
fields. The first issue is whether or not they are all
distinct; to determine this, we need to know which

roots of unity lie in Q(&,,) .Note, for example, that if

Mis odd, then —&_is a 2" root of unity. We will
show that this is the only way in which one can
obtain any non- m" roots of unity.

LEMMA 1.5 If m divides n, then Q(&.) is
contained in Q(<,)

n
PROOF. Since 5%“ =&, we have & €Q(&,), so
the result is clear

LEMMA 1.6 If mand N are relatively prime, then

Q& &) =Q(&m)
Q&) NQ(5,)=Q

(Recall the Q(&.,& ) is the compositum  of

Q(&,) and Q(,) )

and

PROOF. One checks easily that & ¢, is a primitive
mn" root of unity, so that

Qlém) = Q&1 S0)

[Q(é!m'é:n) : Q] < [Q(é:m) : Q][Q(%gn : Q]

= p(m)p(n) = p(mn);

Since [Q(fmn) X Q] = @(mn); this implies that
Q(&n: 60) =Q(&m) We know that Q(S,,, &) has

degree @(mn) over Q, so we must have

[Q(&n: &)1 Q&) = ()

and

[Q&,. &)1 Q&)] = e(m)

[Q(&,):Q(&,) NQ(&,)] = p(m)
And thus that Q(&,,) NQ(&,) =Q

PROPOSITION 1.2 Forany mand n

QU £)=Q(E )

And

Q(ém)mQ(fn):Q(é(m,n));

here [m,n] and (m,n) denote the least common

multiple and the greatest common divisor of M and
N, respectively.
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PROOF.  Write M=pZ.....p5 and p*....p.*

where the [J; are distinct primes. (We allow €, Or fi
to be zero)

Q) =Q(,.)QE ) Q(E, )
and
Q(E)=Q( )QAE, .)-Q(E, L)
Thus
Q& £)=Q( ) QL )QE L)-Q(E )
Q¢ )QE 4 )-QE, )R, )
= Q€ iy e QUE i)

_Q(f @ plmax(ek,fk))

ZQ(g[myn])’
An entirely similar computation shows that
Q(é:m) mQ(é:n) = Q(f(m,n))
Mutual information measures the information

transferred when X; is sent and Y, is received, and is
defined as

)

p(
1(x, y;)=log, (Y)' bits (1)

In a noise-free channel, each Y, is uniquely connected

to the corresponding X, , and so they constitute an

input —output pair (X, Y;) for which

X: 1 .
P(™ =land I(x,y.)=log, —— bits;
) (6108 5 5
that is, the transferred information is equal to the self-
information that corresponds to the input X; In a very

noisy channel, the output Y;and input X, would be

completely uncorrelated, and so P(% )=P(x)
i

1(X;,Y;)=0; that is, there is no

transference of information. In general, a given
channel will operate between these two extremes. The
mutual information is defined between the input and
the output of a given channel. An average of the
calculation of the mutual information for all input-
output pairs of a given channel is the average mutual
information:

and also

X.
P("
(yj

P(x)

106,Y) = Y PO, Y1 (%, Y,) = Y P(x,¥,)log,

bits per symbol . This calculation is done over the
input and output alphabets. The average mutual
information. The following expressions are useful for
modifying the mutual information expression:

P(x.3,)=PCY, Py =PC 1 )P(X)
P(y,) = X PO OP(X)
P(x) =3 PCY, P(Y)

Then

H(X.Y) =2 P(x.Y,)

= > P(x,Yy:)log,
S]]

TP yplos, e
PC% )

1
; P(Xi’ Yj) Ing {W}

R

1
ZP(Xi)IO%m

1(X,Y) =H(X)-H()
1
Where  H (X )=Zi ;P(x,y;)log, -
% , P(%j)

=H(X)

is usually called the equivocation. In a sense, the
equivocation can be seen as the information lost in
the noisy channel, and is a function of the backward
conditional probability. The observation of an output

symbol Y; provides H(X)—H()%) bits of

information. This difference is the mutual
information of the channel. Mutual Information:
Properties Since

P, P =PC PG

The mutual information fits the condition

1(X,Y)=I1(Y, X)
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And by interchanging input and output it is also true
that

1(X,Y)=HY)-H(4)

Where
H(Y) = ZP(y)logzp( )

This last entropy is usually caIIed the noise entropy.
Thus, the information transferred through the channel
is the difference between the output entropy and the
noise entropy. Alternatively, it can be said that the
channel mutual information is the difference between
the number of bits needed for determining a given
input symbol before knowing the corresponding
output symbol, and the number of bits needed for
determining a given input symbol after knowing the
corresponding output symbol

1(X,Y) = H(X)-H(X()

As the channel mutual information expression is a
difference between two quantities, it seems that this
parameter can adopt negative values. However, and is

spite of the fact that for some Y, H(X /'y;) can be

larger than H(X) , this is not possible for the
average value calculated over all the outputs:

P(S )
(X.)

P(x,Y;)
P(x)P(y;)

ZP(Xi’yj”ng ZP(X.,Y) 09, > — =~

Then
P(x.)P(v.
_|(X,Y)=ZP(xi,y1)%so

Because this expression is of the form
M Q

2 Rlog,(=) <0

=) R

The above expression can be applied due to the factor

P(x)P(y;), which is the product of two

probabilities, so that it behaves as the quantity Qi ,
which in this expression is a dummy variable that fits
the condition ZiQi <1. It can be concluded that
the average mutual information is a non-negative
number. It can also be equal to zero, when the input

and the output are independent of each other. A
related entropy called the joint entropy is defined as

HOXY) = 3 POx. v, log, 5o
ij i1 Y

P(x)P(y;)

=Y P(x,y:)log,
ZJ (% Y;)log Py

+Z P(Xilyj)Ingm

Theorem 1.5: Entropies of the binary erasure channel
(BEC) The BEC is defined with an alphabet of two
inputs and three outputs, with symbol probabilities.

P(x)=«a and P(x,)=1-a, and transition
probabilities
P(%):l—p and P(¥2 X1)=0,
2
and P(y3xl):0
and P(ylxz)=p

and P(y3 )=1-p
2

Lemma 1.7. Given an arbitrary restricted time-
discrete, amplitude-continuous channel  whose

restrictions are determined by sets F, and whose
density functions exhibit no dependence on the state
S, let N be a fixed positive integer, and P(X) an
arbitrary probability density function on Euclidean n-
space. p(y|x) for the density

Po(Yars Yo [ %,00%,) and F for F
real number a, let
{(x y):log p()(/|)) >a} o

Then for each positive integer U ,
(u,n, A) such that

For any

there is a code

A<ue™+P{(X,Y) g A}+P{X ¢ F} (2)
Where

P{X.Y)e Al =[ .[pOuy)dxdy,  p(xy)=p()P(Y]X)
and

P{X eF} j [ p(x)x

Proof: A sequence x® e F such that
P{YeA, [X=x"}>1-¢
X

where A ={y:(x,y)eA};
Choose the decoding set B, to be A . Having
chosen XP,........ XY and B,...,B,, . select

x* € F such that
k-1

P{Y eAn-{JBIX= x<k>}21—g;
i=1

k-1
Set B, = A _Ui:l B, . If the process does not
terminate in a finite number of steps, then the
sequences X' and decoding sets B,i=12,..u
form the desired code. Thus assume that the process

terminates after t steps. (Conceivably t=0). We
will show t>u by showing that
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e<te®+P{(X,Y)g A}l+P{X gF} . we

proceed as follows.
Let

B={J B,
P{(X,Y)eAl= |

(x,y)eA
=[p0) [ p(ylx)dydx
X yeA,

= j p() [ p(y|x)dydx+ j p(x)

yeBnA,

(If t=0, take B=¢). Then
p(x, y)dxdy

IV. EXPERIMENTAL DESIGN

We evaluate the performance of our scheme and
study various “what-if’ scenarios through detailed
simulation experiments. We compare our scheme
against existing alternatives of using a least recently
used (LRU) or a least frequently used (LFU) cache
replacement strategy.

A. Algorithms

Ideals. Let A be aring. Recall that an ideal a in A
is a subset such that a is subgroup of A regarded as a
group under addition;

acea,reA=racA

The ideal generated by a subset S of A is the
intersection of all ideals A containing a ----- it is easy
to verify that this is in fact an ideal, and that it consist

of all finite sums of the form Z:I’isi with
LeAs e€S. When S={s,,....,S,}, we shall

write (S, ....., S, ) for the ideal it generates.
Let a and b be ideals in A. The set
{a+b laca,be b} is an ideal, denoted by a+b

. The ideal generated by {ab|aea,beb} is
denoted by ab . Note that ab —ab. Clearly ab
consists of all finite sums Z:aibi with & €a and

b eb,andif a=(a,,..,a,) and b=(b,...,b,)

then ab=(ab,...,ab;,..,a,b)) Let a be an
ideal of A. The set of cosets of ain A forms a ring
Al/a , and ar>a+a is a homomorphism
¢: A Ala. The map b= ¢ (b) is a one to

one correspondence between the ideals of A/a and
the ideals of A containing @ An ideal p if prime if

pzAand abep=acporbep. Thus p

is prime if and only if A/ p is nonzero and has the
ab=0, bz#0=a=0, ie,
A/ pis an integral domain. An ideal m is maximal
if m# A and there does not exist an ideal N

contained strictly between m and A . Thus m is
maximal if and only if A/ m has no proper nonzero
ideals, and so is a field. Note that M maximal =
M prime. The ideals of Ax B are all of the form
axb, with a and b ideals in A and B. To see
this, note that if C is an ideal in AxB and

(a,b)ec , then (a,0)=(a,b)(1,0)ec and

property that

(0,b)=(a,b)(0,))ec . This shows that
c=axb with

={a|(a,b)ec some beb}
and

={b|(a,b)ec some aeca}

Let A be aring. An A-algebra is a ring B together
with a homomorphism I;:A—>B . A
homomorphism of A -alggpra B—>C is a
homomorphism of rings ¢@:B—>C such that
p(i;(a))=i-(a) for all ac A. An A -algebra
B is said to be finitely generated ( or of finite-type
over A) if there exist elements X,...,X € B such

that every element of B can be expressed as a
polynomial in the X, with coefficients in 1(A), i.e.,

X,]—>B

is surjective. A ring

such that the homomorphism A[Xl,...,
sending X, to X

1
homomorphism A — B is finite, and B is finitely
generated as an A-module. Let K be a field, and let
Abe a Kk -algebra. If 10 in A, then the map
kK — A is injective, we can identify K with its
image, i.e., we can regard K as a subring of A . If
1=0 in a ring R, the R is the zero ring, i.e., R = {0}
Polynomial rings. Let K be a field. A monomial in
Xy X, is an expression of the form

XA, a; € N . The total degree of the

monomial is Zai . We sometimes abbreviate it by
X" a=(a,...,a,)el"

polynomial ring k[
ZC XM C,. .o €k, a; el

With the obvious notions of equality, addition and
multiplication. Thus the monomials from basis for

The elements of the

Xyye X, ] are finite sums
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k[Xl,...,Xn] as a K -vector space. The ring

k[Xl,..., Xn] is an integral domain, and the only
units in it are the nonzero constant polynomials. A
polynomial f(X,..., X)) is irreducible if it is
nonconstant and has only the obvious factorizations,
ie, T=gh=g or h is constant. Division in
k[X] . The division algorithm allows us to divide a
nonzero polynomial into another: let f and g be

polynomials in k[X]With g # 0; then there exist

unique  polynomials q,rek[X] such  that

f =qg+r with either r=0 or degr < degg .
Moreover, there is an algorithm for deciding whether
f €(g), namely, find r and check whether it is

zero. Moreover, the Euclidean algorithm allows to
pass from finite set of generators for an ideal in

k [ X ] to a single generator by successively replacing

each pair of generators with their greatest common
divisor.

(Pure) lexicographic ordering (lex). Here
monomials are ordered by lexicographic(dictionary)

order. More precisely, let a=(a,..a,) and
p=(b,..b,) be two elements of (1"

a>f and X“> X7 (lexicographic ordering) if,
in the vector difference ax— f €l , the left most
nonzero entry is positive. For example,

XY?>Y%Z* X%?Z%>X%?Z . Note that
this isn’t quite how the dictionary would order them:
it would put XXXYYZZZZ after XXXYYZ .
Graded reverse lexicographic order (grevlex). Here
monomials are ordered by total degree, with ties
broken by reverse lexicographic ordering. Thus,

a>pif Zai >Z:bI , or Zai :zbi and in
o — B the right most nonzero entry is negative. For
example:

XY4ZT > X°Y°Z* (total degree greater)
XY°Z% > X*%YZ3, X°Y¥Z > X4YZZ.

; then

Orderings on K [Xl, ...Xn] . Fix an ordering on the
monomials in k[Xl,...Xn]. Then we can write an

element f of k[Xl,...Xn] in a canonical fashion,

by re-ordering its elements in decreasing order. For
example, we would write

f =4XY?Z +4Z% -5X°+7X?Z?

as

f = BX>+7X°Z% +4XY?Z +4Z% (lex)
or

f =4XY?Z +7X?Z% -5X°*+4Z% (grevlex)
Let > a,X“ek[X,...X,]
order:

f :aaox"0 +,, X% +...,

in decreasing

Then we define.

f

e The multidegree of ° to be multdeg( f )=

Oy,

e The leading coefficient of f to be LC( f )=

a, ;
0
e The leading monomial of f to be LM( f )
- Xao .
e The leading term of f to be LT( f ) =
a, X®
0
For the polynomial f =4XY?Z+..., the

multidegree is (1,2,1), the leading coefficient is 4, the
leading monomial is XY °Z , and the leading term is
4XY *Z . The division algorithm in K[ X,... X, ].

Fix a monomial ordering in [J z, Suppose given a
polynomial f and an ordered set (g,,...J,) of
polynomials; the division algorithm then constructs
polynomials a,,...a, and I such  that

f=ag, +..+a,0,+r Where either r=0 or

no monomial in I is divisible by any of
LT(9,),...,LT(g,) Step1:1f LT(g,)|LT(f),

divide g, into f to get
LT(f)
f= h, = kX, X,
a9, + 8 LT(g,) ek[X, ]

If LT(9,)|LT(h) , repeat the process until
f=a0,+f (different @ ) with LT(f) not
divisible by LT (g,). Now divide g, into f,, and
so on, until f=ag +..+a,0,+  With
LT(r,) not divisible by any LT(g,),..LT(9,)
Step 2: Rewrite I, = LT (I;)+T,, and repeat Step 1

with r, for f
f=ag+.+a9,+LT(R)+r,  (different
a,'s') Monomial ideals. In general, an ideal a

will contain a polynomial without containing the
individual terms of the polynomial; for example, the
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ideal a=(Y*—X?) contains Y? —X*but not Y
or X2,

DEFINITION 15. An ideal a is monomial if
Y X“ea=X“eca

all @ with c, #0.

PROPOSITION 1.3. Let a be a monomial ideal, and

let A:{a|X“ea} . Then A satisfies the
aechA pel"=Da+pfe (*)
b X ]

generated by the X “,x € A. Conversely, of A isa

condition

And a is the Kk -subspace of k[X

subset of [1" satisfying (*) then the k-subspace

a of k[Xl,..., Xn] generated by {X“ | e A} is
a monomial ideal.

PROOF. It is clear from its definition that a
monomial ideal a is the K -subspace of
K[ X X, ]

generated by the set of monomials it contains. If
a B
X Eaandx ek[Xl, .,Xn].

If a permutation is chosen uniformly and at random
from the Nn! possible permutations in Sn, then the
counts C}”) of cycles of length ] are dependent
random variables. The joint distribution of
cm Z(Cl(n),...,Cr(]n)) follows from Cauchy’s
formula, and is given by

PIC :C]Z;N(”,C):l{i ic; :n}ﬁ[(})% %

n
forcell .

Lemmal.7 For nonnegative integers
m, Mg,

E[lj(cﬁn’)lm’]J :[Um ]1{12 im, < n}

This can be established directly by exploiting
cancellation of the form CEmj] /C!j =1/(c; —m;)!

(L.4)
Proof.

when C; ij, which occurs between the
ingredients in Cauchy’s formula and the falling
factorials in the moments. Write m:ijj .
Then, with the first sum indexed by

c=(C,..C,) €l and the last sum indexed by

correspondence

d=(d,...,
dj=c

E[l"T(d“))”“”]:ZP[c‘”=c11"1<c,»>[mﬂ
= c j=1
3 Sl

ﬁjﬁ >3{3 it n-miT]

=

d)el" via the

—m,, we have

;)™

jic;!

This last sum simplifies to the indicator 1(m < n),
corresponding to the fact that if N—m >0, then
d; =0 for j>n—m, and a random permutation

in S, , must have some cycle structure
(dj,...,d, ) . The moments of CJ(") follow
immediately as

E(CCM™) =j"1{jr<n} (1.2)

We note for future reference that (1.4) can also be
written in the form

E[F"[(cﬁ"’)w} E[ﬁZE”””jl{i im; < n},

@3

Where the Zj are independent Poisson-distribution
random variables that satisfy E(Z;) =1/ j

The marginal distribution of cycle counts provides a
formula for the joint distribution of the cycle counts

C{, we find the distribution of Cf
combinatorial approach combined with the inclusion-

exalpgon formula.

Lemma 1.8. For 1< j<n,
k[n/

pro =k1= "3y I

1=0
Proof.  Consider the set | of all possible cycles of
length j, formed with elements chosen from

{1,2,...n}, so that |I|:n[”” . For each ax € l,

using a

@

consider the “property” G_ of having «; that is,

G, is the set of permutations 7z € S, such that o is
one of the cycles of m&. We then have
|Ga|:(n— )1, since the elements of {1,2,...,n}
not in & must be permuted among themselves. To
use the inclusion-exclusion formula we need to
calculate the term S, which is the sum of the

probabilities of the I -fold intersection of properties,
summing over all sets of I distinct properties. There
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are two cases to consider. If the I properties are
indexed by I cycles having no elements in common,
then the intersection specifies how r] elements are
moved by the permutation, and there are
(n—rj)'(rj £n) permutations in the intersection.

There are Nt/ (j'r1) such intersections. For the

other case, some two distinct properties name some
element in common, so no permutation can have both
these properties, and the r -fold intersection is empty.
Thus

S, =(n—r)!(rj <n)
nlfil 1

x———=1(rj <n) _1
j'rin! jr!

Finally, the inclusion-exclusion series for the number
of permutations having exactly K properties is

(-1 (k+lj N

1>0

Which simplifies to (1.1) Returning to the original
hat-check problem, we substitute j=1 in (1.1) to
obtain the distribution of the number of fixed points

of a random permutation. For kK =0,1,...,n
1 n—k | 1
=N =
k!; I
and the moments of C{™ follow from (1.2) with
n=2,

variance of Cl(”) are both equal to 1. The joint

distribution of (Cl(”),...,Cé")) for any 1<b<n
has an expression similar to (1.7); this too can be

P[C{” =k] = (1.2)

J=1. In particular, for the mean and

derived by inclusion-exclusion. For any
c=(Cp..., Gy) €0° with m=Y"ic;,
PI(C™,...C{")=c]

b

1 ot 1

1Ry ([

i-1 \ 1 >0 with 2\ I

> ili<n-m

The joint moments of the first b counts

co,..,c
and (1.3) by setting m, ,, =

can be obtained directly from (1.2)
m, =0

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each

fixed J, as n— o,
Lk

PIC™ =K] > Jk—le-l“, k=0,12,...,

So that C}”) converges in distribution to a random

variable Zj having a Poisson distribution with mean

1/J; we use the notation C}”) —>4 Z; where
Z,0R,/ )

random variables are independent.

to describe this. Infact, the limit

Theorem 1.6 The process of cycle counts converges
in distribution to a Poisson process of [] with

intensity j_l. That is, as N — o0,
Ccm.cV,..) =, (Z,,Z,,..) (1.2
Where the Zj, j=1,2,..., are independent Poisson-

1
distributed random variables with E(Z;) =~
J

Proof. To establish the converges in distribution one
shows that for each fixed b>1 as Nn-—oo,

P[(C",...,.C!")=c] - P[(Z,,...,Z,) =]
Error rates

The proof of Theorem says nothing about the rate of
convergence. Elementary analysis can be used to

estimate this rate when b =1. Using properties of

alternating series with decreasing terms, for
k=0,1..,n
1 1
k'((” k+1)! (n—k+2)!) [PIC" =k]-P[Z, = K]
1
<
ki(n—k+1)!
It follows that
M <Z‘P[C(n) K] P[Z—k]‘_ -1 w12
(n+DH!'n+2 £ Y
Since

et 1 1 1
(1?51 >nl= (n+l)!(l+ n+2  (+2)n+3) S e

We see from (1.11) that the total variation distance
between the distribution L(C.™) of C™ and the

distribution L(Z,) of Z;

B. Key Share Object

A key share object (KSO) allows Gatekeepers to
verify the authenticity of key shares and share-shares
without using digital signatures. For each single share
di and its share-shares dil, di2, ..., din, the hash value
is computed and added to the KSO.

Thus, the KSO consists of (n + 1) x (n + 1) hash
values:

h(d1), h(d1,1), .., h(d1,n)
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h(dn), h(dn,1), .... h(dn,n)

Hash values of key shares di and their share-shares
di,j in a KSO.

where h is a cryptographically secure hash function.
Additionally, the KSO also contains the appropriate
evaluation points 1, ..., n. The KSO can be seen as a
simple lookup table for the authenticity of
cryptographic keys.

C. Gatekeep Signature Agreement

The overall idea is that Gatekeepers agree on the next
set of Gatekeepers and then mutually sign the new
witness object using the previous protocols. We
assume that there exist two black box protocols:
LeavingGatekeeper() determines which Gatekeepers
are removed while JoiningGatekeeper() elects joining
entities. One possible implementation for those
protocols is that Gatekeepers agree on each joining
and leaving entity using a consensus protocol. For
simplicity, the signature agreement protocol assumes
the standard communication model with a complete
(fully connected) synchronous network of pairwise
authentic channels among the Gatekeepers. A
broadcast channel is not required since broadcast can
be achieved by sending a message to each entity
individually. Each Gatekeeper proceeds as follows:

1. Replace all entities in ObjlG using
LeavingGatekeeper() and JoiningGatekeeper() to
obtain Obj0!G and set vc0! = vc! +

2. Compute IDO!G = h (PKG, vc0!, IDGroup).

3. Create a partial signature: ObjOsig,l G := h
[10bj0!G_di (mod n0).

4. SendToAll([ID0!G, h(Obj0!G),0bj0sig,i!G ]).

5. Wait for > t messages having an equal identifier
and hash for the new witness object and which carry a
correct partial signature.

6. Compute the full signature ObjOsig !G and store
the witness object in the object store.

7. Initialize the joining entities with PKO, PKG,
IDGroup, vc! and their share-share of the signature
key. The joining Gatekeepers will have to start the
synchronization protocol.

8. Store vcO! as new witness object counter.

Establish the asymptotics of P[AM(C(”))] under
conditions (A,) and (By,), where

ACT=N N {cf =0}

I<isn F41<j<r;
and {i:(l’i'/r‘id)—le(i’g‘) as 1—o0, for

some g' > 0. We start with the expression

" P[To,(Z) =n]
P c™My1= om
ACOI= o @) =n
H {1—%(1+Em)} (1.1
P[Te,(Z) =n]

:%exp{Z[log(ﬂ i0d) —i‘led]}

i>1

{1+O(n_l¢«£1,2,7} (n))} @.2)
and
PI-—I-On (Z ) = n]

:%exp{Z[log(ﬂ i0d) —i‘led]}

i>1
{1+0(7p, ., (M)}
Where 50{'1,2,7} (n) refers to the quantity derived from
Z . 1t thus follows that P[A, (C™)]0] Kn™*®

for a constant K, depending on Z and the I, and
computable explicitly from (1.1) - (1.3), if
Conditions (A,) and (B,,) are satisfied and if

(1.3)

- :O(i’gl) from some g >0, since, under these
n*l(o{'lyzj} (n)  and

n_lgo{l‘zj}(n) tend to zero as N —> oo, In particular,

circumstances, both

for polynomials and square free polynomials, the
relative error in this asymptotic approximation is of

order N if g >1.

For 0<b<n/8and n=ny, with n,
0 |
< dpy, (L(C[L,b]), L(Z[1,b]))
<é;,(n,b),
Where &, (n,b)=0O(b/n) under Conditions

(A)), (D)) and (By;) Since, by the Conditioning
Relation,

L(CILb] [Ty (C) =1) = L(Z[Lb] [T,y (Z) =1),

It follows by direct calculation that
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dTV (L(CLZ[l b]) L(%[l b])) replaced by ¢10 11 ( )in the above, which has the
=dTV(L(TOb(C)) LUOb(Z))) required order, without the restriction on the I
maxZP[T Z)=r] implied by S(00) <oo . Examining the Conditions
= b =
reA (A)),(Dy) and (B,,), it is perhaps surprising to find
{1_ P[T,,(Z2) = n—r]} (L.4) that (B,;) is required instead of just (By,); that is,
P[T,(2) =n] that we should need D" g, =O(@i™) to hold
iggri)rr]essing the argument Z from now on, we thus for some &, >1. A first observation is that a similar
0 0 problem arises with the rate of decay of &;; as well.
dr, (L(C[L b]), L(Z[1 b])) .
P[T. =n—r] For this reason, N, is replaced by Ni. This makes it
=2 PlTyy =rli1-— ibl | diti by the weak
£t P[Ty, =n] . possible to replace condition (A) by the weaker
[n/2] _ pair of conditions (A,) and (D) in the eventual
<Y P, =1+ Y =1
v ~ P[T,, =n] assumptions needed for & (n b) to be of order

O(b/n); the decay rate requirement of order i "

X{i PI.-l-Ob = S](F)I.-l-bn =N _S]_ I:)I.—l-bn =Nn- r]}

is shifted from &, itself to its first difference. This is
needed to obtain the right approximation error for the

[n/2] random mappings example. However, since all the
<D P[Ty, =r]+ Z P[T,, =r] classical applications make far more stringent
r>n/2 assumptions about the gil,l > 2, than are made in
[n/2] —n—<l— -n—
X Z P[T,, = ]{P[I'bn n—s]-P[T, =n-r]; (By;) . The critical point of the proof is seen where
P[To, =] the initial ~ estimate  of  the  difference
[n/2] (m) _ (m) _
=s]-P[T,," =s+1] . The factor
+Z P[To, = 1] Z P[T =s]P[T,, =n—s]/P[T,, = ]
s=[n2}+1 €1019) (n), which should be small, contains a far tail
The first sum is at most 2n"ET,,; the third is ) i
bound by element from nl of the form ¢ (n)+u, (n), which
(max P[T,, =s])/P[T,, =n] is only small if @ >1, being otherwise of order
n/2<s<n
1-a,+6 . ..
Eos0) (n/2 b) 3 O(n ) for any 5>(;, since @, >1 is in any
< : > is gives ri
n OP [O 1] case assumed. For S$>nN/2, this gives rise to a
3n (/2] (/2] contribution of order O(N™""**°) in the estimate of

—2
0P9[0,1] Py (n)z PITo, = r]z PIT, =15 \r s‘the difference P[T,, =Ss]—P[T,, =s+1], which,
. in the remainder of the proof, is translated into a
120y (O ET,, P

. . ~l-a,+6 -

“op[01 n contribution of order O(tn ) for differences of
the form P[T,, =s]-P[T,, =s+1], finally
Hence we may take leading to a contribution of order bn™* for any
66105 (N) 6>0 in &,,(n,b). s t Id

. 7}(n,b) —2nET, (2)11 108} p in ( ). Some improvement wou
6P,[0,1] seem to be p055|ble, defining the function g by
6 (n/2.b) w5 g(w) =1{W:S} —1{W:s+t}, differences that are of the

+——=e¢ \ : :

6P,[0,1] o5} form P[T,, =s]—P[T,, =s+t] can be directly

estimated, at a cost of only a single contribution of
Required order under Conditions (A,),(D,) and  the form @’ (n)+u; (n). Then, iterating the cycle,

(By), if S(x0)<oo. If not, ¢108( ) can be In which one estimate of a difference in point
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probabilities is improved to an estimate of smaller
order, a bound of the form

|P[T,, =s]-P[T,, =s+t]|=0(n*t+n"**)
for any & >0 could perhaps be attained, leading to a
final error estimate in order O(bn™ +n%") for
(n b). This would be of

the ideal order O(b/n) for large enough b, but
would still be coarser for small b.

any o >0, to replace &g

With b and N as in the previous section, we wish to
show that

d., (L(C[L,b]), L(Z[L b])) —%(n +1)* 1— 6| E[T,, —ET,|

<é,5(nb),

Where & (n b) =0(n'b[n b +n"*]) for
any >0 under Conditions (A,),(D,) and

(By,), with 3, . The proof uses sharper estimates.
As before, we begin with the formula

dr, (L(CILb]), L(Z[L, b))

— _ _ I:)[Tbn =n- r]
S, - r]{l P 0] }

r>0

Now we observe that

_ 1)1 Pl =n-r]
; P[TOb - r] {1 P[Ton = n] +

r=0 ID[TOn = n]

n

X z P[Ty, =sI(P[T,, =n—s]-P[T,, =n—-r])
s=[n/2]+1
<4nETg, +(max P[Ty, =s])/ P[T,, =n]
+P[T,, >n/ 2]
n/2,b
caneTg 4 s N 2D) (L)
6P,[0,1]
We have

n—r]} S PITy, =11

woy PLTop =1
| Z I:)I.-I-On = n]
r=0

{22 Prrob = s](F)I.—I—bn =N _S]_ PI.—I—bn =n- r]}

- S - prmn—nl}) |

W; PTy, = r]; PTy, = 5]|3 - r|

x{ 101 (N,D) +2(r vs)[1-6|n ’1{K 0+4004 (n)}}

< % gt

onP,[0,1]

+4[1-0|n BT {K 0+ 4670, ()]
3

(HnPe[O,l]) J

Ob‘g 10.14) (n,b)

1.2)

The approximation in (1.2) is further simplified by

noting that

[n/2] [n/2] s—r(1-6
ZP[TOb=I‘] {ZP[Tob— ]—( )( )}
r=0 s=0 r] + ]. +

(s-nNE-9)
{Z P[To = ]T}+|

<[”'22 PIT, =11 Y P[Ty, = ]w

s>[n/2]

<[-GInE(T,,1{Ty, > n/2}) <2[1-6n*ETg, 1.3)
and then by observing that
S P[Ty, - r]{z PIT,, = ](“)(16’)}
r>[n/2] >0 1
<N 1- 6| (ETy,P[Ty, > N/ 2]+ E(Ty,1{Ty, >n/2}))
< 4\1—9\ n?ET; @.4)

Combining the contributions of (1.2) —(1.3), we thus
find tha
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| dpy (L(CILbY), L(Z[Lb]))

~(n+1)™ ) P[Ty, = f]{z P[Tg, =s](s—r)(- 9)} |

r>0 $>0

<&, (,b)
_ 3 -1
= 3P 0] {5{10.5(2)} (n/2,b)+ 207 ETy 0, (N, b)}
241-6|¢. ., (n
+2n2ET2 1 4+3[1- 6]+ —‘ Hosy (V)
6P,[0,1]

The quantity 5{7_8}(n,b) is seen to be of the order

claimed under Conditions (A,),(D,) and (B,,) ,

provided that S(o0) <oo; this supplementary

condition can be removed if ¢{’;0.8} (n) is replaced by
¢{§o.n}(”) in the definition of £, 5 (,b) , has the

required order without the restriction on the I

implied by assuming that S(o0) < oo.Finally, a direct
calculation now shows that

Z P[Tob =r] {Z ID[Tob =s](s-r)d- ‘9)}

r=0 s>0
1
= E'l_ 6|E [Ty, — ETy|

D. Key Tree Object

For each authorized reader ri, the owner creates a
fresh symmetric key SKi which is encrypted with the
reader’s public key PKri . The encrypted secret keys
form the leaves of the tree. For each pair [SKi,
SKi+1], i mod 2 = 0, the owner recursively creates a
new symmetric key SKi,i+1 which is encrypted
twice, once with the left key SKi and once with the
right key SKi+1l. The two encryptions form the
content of the parent node of both child nodes. Unlike
ordinary binary trees, the root itself has a parent node
which forms the final root of the tree. That node
consists of the encrypted private key PK—1 R .

illustrates this layout which is similar to the
VersaKey [66] group key management scheme.

The root nodes contain the keys that only authorized
readers can access. To change reader membership,
the owner must access certain nodes of the tree. He
uses a symmetric backdoor key SKO that is added to
the KTO encrypted with the owner’s PKO. The
owner encrypts the symmetric keys of all nodes using
SKO and adds the encryptions to the respective
nodes. Additionally to the owner’s backdoor key, the
root’s symmetric key SKOR belonging to the previous
tree is added and encrypted with the secret key SKR
of the current root node whereas IDOK TO references

(1EByample 1.0.

the previous KTO. This allows access to the
symmetric key at the root of the previous version
using only one symmetric decryption. The KTO
contains a version counter vcKTO that is incremented
on each update. The key tree object is filed to the
object store and its self-verifying identifier IDKTO is
sent to the Gatekeepers during their initialization or
on each KTO update. Gatekeepers only accept the
update if vcKTO is higher than the last one and
signed by the owner.

Consider the point

O=(0,...,0)0el1". For an arbitrary vector r, the

coordinates of the point X=0+1r are equal to the
respective coordinates of the vector
r:x=(x,..x") and r =(x",...,x") . The vector
r such as in the example is called the position vector
or the radius vector of the point X . (Or, in greater
detail: r is the radius-vector of X w.r.t an origin O).
Points are frequently specified by their radius-

vectors. This presupposes the choice of O as the
“standard origin”.  Let us summarize. We have

considered ] " and interpreted its elements in two
ways: as points and as vectors. Hence we may say

that we leading with the two copies of [J": [1"=

{points}, [ "= {vectors}

Operations with vectors: multiplication by a number,
addition. Operations with points and vectors: adding a
vector to a point (giving a point), subtracting two

points (giving a vector). [] " treated in this way is
called an n-dimensional affine space. (An “abstract”
affine space is a pair of sets , the set of points and the
set of vectors so that the operations as above are
defined axiomatically). Notice that vectors in an
affine space are also known as “free vectors”.
Intuitively, they are not fixed at points and “float

freely” in space. From [J " considered as an affine
space we can precede in two opposite directions: [ "
as an Euclidean space <= [1 " as an affine space =

(] "as a manifold.Going to the left means introducing
some extra structure which will make the geometry
richer. Going to the right means forgetting about part
of the affine structure; going further in this direction
will lead us to the so-called “smooth (or
differentiable) manifolds”. The theory of differential
forms does not require any extra geometry. So our
natural direction is to the right. The Euclidean
structure, however, is useful for examples and
applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. n O"
considered as an affine space we can already do a
good deal of geometry. For example, we can consider
lines and planes, and quadric surfaces like an
ellipsoid. However, we cannot discuss such things as
“lengths”, “angles” or “areas” and “volumes”. To be

able to do so, we have to introduce some more
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definitions, making [] "a Euclidean space. Namely,

we define the length of a vector a = (a',...,a") to
be

la==/(@")% +...+ (a")? )
After that we can also define distances between
points as follows:

d(A B) :=\E\ )

One can check that the distance so defined possesses
natural properties that we expect: is it always non-
negative and equals zero only for coinciding points;
the distance from A to B is the same as that from B to
A (symmetry); also, for three points, A, B and C, we
have d(A,B) <d(A,C)+d(C,B) (the “triangle
inequality”). To define angles, we first introduce the
scalar product of two vectors

(a,b):=a'v" +...+a"o" )
Thus [a]=+/(a,a)

denote by dot: ab=(a,b), and hence is often
referred to as the “dot product” . Now, for nonzero
vectors, we define the angle between them by the
equality

(a,b)

cosSq i=~+——r (4)
8] bl

The angle itself is defined up to an integral
multiple of 27z . For this definition to be consistent
we have to ensure that the r.h.s. of (4) does not
exceed 1 by the absolute value. This follows from the
inequality

2 21412

(a,b) §|a| |b| (5)
known as the Cauchy-Bunyakovsky—Schwarz
inequality (various combinations of these three names
are applied in different books). One of the ways of
proving (5) is to consider the scalar square of the
linear combination a+th, where teR . As

(a+tb,a+th)>0 is a quadratic polynomial in t

which is never negative, its discriminant must be less
or equal zero. Writing this explicitly yields (5). The
triangle inequality for distances also follows from the
inequality (5).

. The scalar product is also

Example 1.1, Consider the function f(X)=X'

(the i-th coordinate). The linear function dx’ (the
differential of X' ) applied to an arbitrary vector h is

simply h'.From these examples follows that we can
rewrite df as

of of
df =——dx* +...+ —dx", ®

OX OX
which is the standard form. Once again: the partial
derivatives in (1) are just the coefficients (depending

on X); dx',dx?,... are linear functions giving on an

arbitrary vector h its coordinates h' h?,...,

respectively. Hence

of
df (x)(h) = Oy () = o h'+
of

ot
ox"

h", (@

Theorem 1.7.  Suppose we have a parametrized
curve t > X(t) passing through x, €1 " at t =t

and with the velocity vector X(t,) =0 Then

W(to) =0, T (%)) =df (x,)(v) @

Proof. Indeed, consider a small increment of the
parameter t:t, —t, +At , Where At+—>0. On
the other hand, we have

f 0% +h) = f (xo) =df (,)(0)+ B[] for
an arbitrary vector h , where S(h) —0 when
h — 0 . Combining it together, for the increment of
f (x(t)) we obtain

f(x(t, + At)— (x,)

= df (%,)(0.At + (At AL)

+B(0.At+ a(At)At).[uAt + a(At)At|

= df (%,)(0).At + y(At)At

For a certain ¥(At) such that y(At) — 0 when
At — 0 (we used the linearity of df (X,)). By the
definition, this means that the derivative of f (X(t))

at t =t is exactly df (X,)(v) . The statement of the
theorem can be expressed by a simple formula:

GOO) A A,
dt OX ox"

To calculate the value Of df at a point X, on a
given vector U one can take an arbitrary curve
passing Through X, at t, with v as the velocity

vector at t; and calculate the usual derivative of

f(x(t)) att=t,.

Theorem 1.8.
UciO",

For functions f,g:U —[ ,
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d(f +g) =df +dg (1)
d(fg)=df.g+ f.dg )

Proof. Consider an arbitrary point X, and an
arbitrary vector v stretching from it. Let a curve
X(t) be such that X(t;) = X, and X(t,) =v.
Hence

d(f +9)(x)(v) = % (f (x(®) +g(x(®))

at t =1, and

d(fg)(x,)(v) = % (f(x@®)g(x(1))

at t=t, Formulae (1) and (2) then immediately

follow from the corresponding formulae for the usual
derivative Now, almost without change the theory

generalizes to functions taking values in [1™ instead
of [J . The only difference is that now the differential

ofamap F:U —[™ ata point X will be a linear
function taking vectors in [1" to vectors in ™
(instead of [] ). For an arbitrary vector h g/ ",

F(x+h)=F(x)+dF(x)(h)

+B(h)|h| ©)
Where f(h) -0 when h—0. We have
dF = (dF',...,dF™) and

dF :8—F1dxl+...+ 8Fn dx"
OX OX
oF' oF*
oo (o
= o (4)
oF™ oF™ || dx"
oxt T ox"

In this matrix notation we have to write vectors as
vector-columns.

Theorem 1.9. For an arbitrary parametrized curve
X(t) in 0", the differential of a map

F:U—>0O™ (where U c0") maps the velocity
vector X(t) to the velocity vector of the curve

F(x®) inO™:
W = dF (X())(X(1)) ®

Proof. By the definition of the velocity vector,

X(t + At) = X(t) + X(t).At + a(At) At 2)

Where a(At) >0 when At—0 .
definition of the differential,

F(x+h) =F(x)+dF (x)(h)+ B(h)|h 3)|

By the

Where £(h) — 0 when h — 0. we obtain

F(X(t +At)) = F (X + X(t).At + (At)At)

h

= F(X) + dF () (X()) At + (At)At) +

B(X()At + a(At)AL).|[x(t) At +'a(At)At‘

= F(x)+dF (X)(X(t) At + y(At) At

For some y(At)—>0 when At—0 . This

precisely means that dF(X) X(t) is the velocity

vector of F(X). As every vector attached to a point

can be viewed as the velocity vector of some curve
passing through this point, this theorem gives a clear
geometric picture of dF as a linear map on vectors.

Theorem 1.10 Suppose we have

F:U->V and G:V oW,
UcO" VW cO™WcOP (open domains). Let
F:X+—> y=F(X). Then the differential of the

composite map GoF :U —W is the composition
of the differentials of F and G :
d(GoF)(x) =dG(y)odF (x) 4)

two maps
where

Proof. We can use the description of the differential
.Consider a curve X(t) in 0" with the velocity

vector X Basically, we need to know to which
vector in [I it is taken by d(GoF) . the curve
(GoF)(x(t) =G(F(x(t)). By the same theorem,
it equals the image under dG of the Anycast Flow

vector to the curve F(X(t)) in ™. Applying the
theorem once again, we see that the velocity vector to
the curve F(X(t))is the image under dF of the

vector X(t) . Hence d(GoF)(x)=dG(dF(x))

for an arbitrary vector X .
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Corollary 1.0.  If we denote coordinates in [] " by
(x',...,x") andin 0 "by (y',...,y"™), and write

dF = —dx +..+ —dx 1
ox' ox" @

dGza—Gldler...+aGn dy", (2)
oy oy

Then the chain rule can be expressed as follows:

oG oG
d(GoF)=—dF'+..+—dF", 3
(GoF) Y & @)

Where dF' are taken from (2). In other words, to get
d(GoF) we have to substitute into (2) the

expression for dy' = dF' from (3). This can also be
expressed by the following matrix formula:

oG" oG \(oF'  oF

ayl ""aym y....
d(GoF)=| .. .. .. S 4)

8G® 8GP || oF™ oF™ || dx"

oyt oy JLaxt T ox”

i.e., if dG and dF are expressed by matrices of
partial derivatives, then d(GOF) is expressed by
the product of these matrices. This is often written as

ot or ot o
ol x| | oyt oy"
oz® oz° oz® oz°
PV YR

o oy
EYar
...... : (5)

Yy

oxt ox"
Or
oz & ot oy ©)
oxt oy ox?’

Where it is assumed that the dependence of y e[] ™
on X e[l " is given by the map F , the dependence
of zell P on yell™ is given by the map G, and

the dependence of z e[l Pon Xxell"is given by
the composition GoF .

Definition 1.6. Consider an open domain U <[] ".
Consider also another copy of [I ", denoted for
distinction [ , with the standard coordinates
(y:...y") . A system of coordinates in the open

domain U is given by a map F:V —U, where

V <] is an open domain of [, such that the
following three conditions are satisfied :

(1) F issmooth;

(2) F isinvertible;

3) F':U -V isalso smooth

The coordinates of a point X €U in this system are
the standard coordinates of F(X) €[] Iy

In other words,

Fi(yh.y) - x=x(y"..,y") @
Here the variables (Yy'..,y") are the “new”
coordinates of the point X

Example 1.2. Consider a curve in [ 2 specified
in polar coordinates as
X@®):r=r(t),p=0(t) @

We can simply use the chain rule. The map
t > X(t) can be considered as the composition of

the maps  t (r(t), o)), (r,p) > x(r,p) .

Then, by the chain rule, we have

- dx oxdr oxde ox:
dt ordt JOe dt or

%.
op

Here I and ¢ are scalar coefficients depending on

al derivatives %/ %
t, whence the partial derivatives o 8(p are

vectors depending on point in [J 2 We can compare
this with the formula in the “standard” coordinates:

X = € X+ e, y Consider ~ the  vectors
ax@r ) a%(p' Explicitly we have

x_ (cos,sin ) 3

or

%:(—rsin ®,1CoS ) (4)

Op

From where it follows that these vectors make a basis
at all points except for the origin (where r =0). Itis
instructive to sketch a picture, drawing vectors
corresponding to a point as starting from that point.

Notice that a%r’a%qo are, respectively, the
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velocity vectors for the curves I X(r, @)
(p =g, fixed) and @+ x(r, @) (r =1, fixed)
. We can conclude that for an arbitrary curve given in
polar coordinates the wvelocity vector will have

components (r,(p) if as a basis we take
.=ay —ox/ -
& =o€ = Yoy

X=¢ r+e, ¢ (5)
A characteristic feature of the basis €,, e, is that it is

not “constant” but depends on point. Vectors “stuck
to points” when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same
appearance in all coordinate systems.
Proof. Follows directly from the chain rule and

the transformation law for the basis €, .In particular,

the elements of the basis €; :a%xi (originally, a

formal notation) can be understood directly as the
velocity  vectors of the coordinate lines

X' > x(x},...,x")  (ll coordinates but X' are

fixed). Since we now know how to handle velocities
in arbitrary coordinates, the best way to treat the

differential of a map F :[J" —[1 ™ is by its action
on the velocity vectors. By definition, we set

dx(t dF (x(t
a0 2 ) o)
Now dF(X,) is a linear map that takes vectors

attached to a point X, €[] " to vectors attached to

the point F(x) el ™

dF:a—Fldx1+...+a—Fndxn
OX OX
oF' oF!
o Taxt |[dx
(- | IR o (2)
oF™ oF™ || dX"
ot ox"

In particular, for the differential of a function we
always have

df = of dx' +...+ o dx", (3)

ot ox"

Where X' are arbitrary coordinates. The form of the
differential does not change when we perform a
change of coordinates.

Example 1.3 Consider a 1-formin [] 2 given in the
standard coordinates:

A=—ydx+Xxdy In the polar coordinates we will
have X =rCOS¢@, Yy =rSing, hence

dx =cosedr —rsinpde

dy =sin @dr +r cos pd g

Substituting into A, we get

A=—rsin@(cosedr —rsin @de)

+r COS @(Sin @dr + r cos pd @)

=r’(sin’ p+cos’ p)dp =ride

Hence A= rquo is the formula for A in the polar

coordinates. In particular, we see that this is again a
1-form, a linear combination of the differentials of
coordinates with functions as coefficients. Secondly,
in a more conceptual way, we can define a 1-form in

a domain U as a linear function on vectors at every

point of U
(L) = +..+oU", @
If U=Zeil)', where €, :a%xi . Recall that the

differentials of functions were defined as linear
functions on vectors (at every point), and

i i OX N
dx' (e;) = dx (ﬁj =3 (2) at
every point X.

Theorem 1.9. For arbitrary 1-form @ and path 7,

the integral J @ does not change if we change

e
parametrization of ¥ provide the orientation remains

the same.

Proof:  Consider <a)(x(t)),j—:> and

<a)(x(t(t'))),%> As

dx\ dt

<w(x(t(t'»),%>:Kw(x(t(t')»,ﬂa,

E. Asymptotic Runtime for Key Tree Object

The time for operations must be analyzed separately
for reader addition, reader removal and access to the
tree. Because the time for asymmetric decryption
PKDec and encryption PKEnc can differ, those
operations are listed separately while secret-key de-
and encryptions are summed up in SKOP . SKGen
denotes the number of symmetric-key creations and
PKGen counts the number of public-key generations.
The creation of a full key tree object with mnew
readers requires 2mnew secret-key generations. The
encryption of the tree needs 4mnew — 3 symmetric-
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key operations and mnew public-key encryptions. In
the average case, it is assumed that a constant number
c of readers is removed from the group which is
independent of the total number of readers m in the
tree. The assumption is realistic since it is rarely the
case that the number of removals is proportional to
the total number of entities in the tree. The
complexity of a remove operation is logarithmic in
the number of secret-key generations and operations
(for details see [39]). Moreover, only one public-key
generation for the root private key and one public-key
decryption for the owner’s backdoor key SKO is
needed. Table 1 depicts the runtime in O-notation.
Accessing a single KTO depends on the number of
readers m of the group. Access to one key tree
requires one public-key decryption for the leaf and
logm secret-key decryptions to infer the private key.
The final root of the tree as depicted in accessing k
KTOs requires only adding a factor of k to the
number of symmetric-key decryptions because of the
backward reference within a KTO, if assuming that
the version difference between two used trees is
constant. Since k >> logm, the approximation O(k +
logm) O(k) holds. If counting the number of public-
key decryptions to infer the symmetric blocks keys,
one has to add O(k) for PKDec and SKDec when
accessing k blocks.

V. ALGORITHM

Heuristic algorithm for the computation of the
minimum cost delegation chains for the certificates
presented by a client. The algorithm receives as input
the set Cert of certificates presented by a client during
a session, the set T T of trust tables, authorities Auth,
authority classes AC, delegation certificates Deleg
Certs, and authority certificates Authority Certs. For
each certificate cert in Cert, the algorithm first calls
function CHECKCORRECTNESS that performs all
the noncryptographic controls (e.g., expiration time)
on cert. If function CHECKCORRECTNESS returns
true for each trust table TT in T T such that cert is
compatible with TT (i.e., cert contains all the
attributes required by TT and cert satisfies all the
check conditions specified in the definition of TT),
the algorithm calls function Satisfy with parameters
cert and TT. Function Satisfy returns a set ver list of
certificates forming the delegation chains (if any)
supporting all the common attributes in cert and TT.
If all the certificates in ver list are valid, the algorithm
inserts a tuple in trust table TT whose attributes
values are extracted from the corresponding attributes
in cert; the algorithm terminates returning an error
message, otherwise. We now describe how function
Satisfy works. Function Satisfy is the core component
of our algorithm. The function takes as input a
certificate cert and an entity E, which may either be a
trust table or an authority class compatible with cert.
It returns a set of certificates that compose the
delegation chains supporting all the attributes in
cert.attributesN Attributes(TT), and rooted at an

authority (or authority class) that is trusted with
respect to TT. If such delegation chains do not exist,
the function returns an empty set of certificates.
Function Satisfy first checks whether cert.issuer is a
valid authority with respect to entity E. Three cases
may occur: (1) cert.issuer appears in the except clause
of E (i.e., cert.issuer is in Except(E)), and the function
terminates, returning an empty set of certificates; (2)
cert.issuer appears in the authoritative clause of E
(i.e., certissuer is in Authoritative(E)), and the
function terminates, returning cert as the unique
certificate composing the delegation chain; or (3)
cert.issuer is a member of an authority class in the
authoritative clause of E, and the delegation chains
proving this membership are stored in variable
cert.issuer.ac ver list(E). To verify whether cert.issuer
is @ member of an authority class in the authoritative
clause of E, function Satisfy calls function

Let p be a rational prime and let K =[] (). We
write ¢ for &, or this section. Recall that K has
degree @(p)=p—1 over [1. We wish to show
that O, =01 [£]. Note that ¢ is a root of X" —1,
and thus is an algebraic integer; since O is a ring

we have that [] [é’] (e OK. We give a proof without

assuming unique factorization of ideals. We begin
with some norm and trace computations. Let | be an

integer. If j is not divisible by p, then ¢ is a
primitive pth root of unity, and thus its conjugates
are £,C7,..., &P Therefore

Then (é’j):é/‘i‘é'Z+...+é’p’l:q)p(é’)_]_:_1

If p does divide j, then {j =1, so it has only the

TrK/H (é’J) =p-1 By
linearity of the trace, we find that

Th, =8 =Tr, 1-¢H) =..

-1
=Tr,, 1-¢")=p
We also need to compute the norm of 1—-¢ . For
this, we use the factorization

XPLHxP? 4 +1=D (X)

= (Xx=)(X=¢").(x=¢");
Plugging in X =1 shows that
p=@1-)A~¢?)..1-¢")
Since the (1—¢) are the conjugates of (1—¢),
Ny, 1-<)=p The key result

one conjugate 1, and

this shows that
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for determining the ring of integers O, is the

following.
LEMMA 1.9
1-8)0 N =pll
Proof. We saw above that p is a multiple of

1-¢) in O, so the
(1-4)O Nl o p! is immediate. Suppose now

inclusion

that the inclusion is strict. Since (1-)O, Nl is
an ideal of [ containing p.J and pll is a maximal
ideal of (1 , we must have (1-¢)O, NI =[]
1=a(1-¢)

Forsome o € O, . Thatis, 1—¢ isaunitin O,.

Thus we can write

COROLLARY 11 For

Tr,, (A-&a) € pll
PROOF. We have

any ae€Q,

(@—a)) ™ =a +a, +...+a, ,¢ " This is
an algebraic integer since ¢ =¢P is. The same
argument as above shows that a, €l], and

continuing in this way we find that all of the &, are
in [ . This completes the proof.

Example 1.4 Let K =[] , then the local ring [] )

is simply the subring of [ of rational numbers with
denominator relatively prime to p . Note that this

ring [, is notthe ring L] jof p -adic integers; to

get [J , One must complete [l The usefulness of

(p)~
OK,p comes from the fact that it has a particularly
simple ideal structure. Let @ be any proper ideal of
Oy , and consider the ideal MO, of O, . We

claim that a = (a0, )0, That is, that a is

K,p;
generated by the elements of a in amOK. It is
clear from the definition of an ideal that

T (@=¢)a) =0y (A-¢)a) +...+ o 1 (L= Fa), (@anOy)Oy ,- To prove the other inclusion,

=0,(1-&)o (@) +..+0,,(1-)o, (@) let & be any element of @ . Then we can write

=(1-Qo(@)+..+(1-¢" oy, (@)

Where the o; are the complex embeddings of K
(which we are really viewing as automorphisms of
K') with the usual ordering. Furthermore, 1—¢! is

amultiple of 1—¢ in O, forevery j=0. Thus
Tr,, (@(l-4)) e (1-4)O, Since the trace is
also a rational integer.

PROPOSITION 1.4 Let p be a prime number and
let K =[[J (£,) bethe p™ cyclotomic field. Then

O =0[¢, 1=0[X]/ (D ,(x)); Thus
1<, ¢ 5 isan integral basis for Oy .
PROOF. Let a €Oy and write
a=ay+al+.+a, ,"" Wi aell.
Then
al-¢)=a,1-¢)+a(d—¢")+..
+a, ,(¢"°=¢")
By the linearity of the trace and our above

calculations we find that Tr, (a(1-S)) = pa,
We also have

Tre,, (@(l-¢)) e pl,so a, €[] Next consider
the algebraic integer

a=ply where Le€O, and yegp. In
particular, fea (since f/yea and a is an
ideal), so f€Oy and y&p. so feanO,.
1/y€Oy,,  this

a=pBlye(@n0,)0, ,, as claimedWe can

Since implies that
use this fact to determine all of the ideals of O, .
Let & be any ideal of O, jand consider the ideal
factorization of amO, in O,. write it as

amO, =p"b For some N and some ideal b,
relatively prime to p. we claim first that

bO, , =0y ,- We now find that

a=(@n0,)0, ,=p"bO, , =p"Oy, Since
bO, ,- Thus every ideal of O, , has the form
p"OK'p for some n; it follows immediately that

. . . n

Oy is noetherian. It is also now clear that p OK'p
is the unique non-zero prime ideal in O, , .
Furthermore, the inclusion Oy > Oy ,/ pOy ,
Since  pO, ,NO, =p, this map is also

surjection, since the residue class of a/ €Oy ,

(with ¢ € O and S & p) is the image of a8 in
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OK/p, which makes sense since [ is invertible in

Oyjp- Thus the map is an isomorphism. In

particular, it is now abundantly clear that every non-
zero prime ideal of O, is maximal. To show

that O, ,is a Dedekind domain, it remains to show
that it is integrally closed in K. So let ¥ € K be a
root of a polynomial with coefficients in OKyp;

o . a, _ a
write this polynomial as X™ +—"Lx™ 1 4+ =0
B B

with €0, and B0 .  Set

B =503, 1 Multiplying by B™ we find that
Py is the root of a monic polynomial with
coefficients in O,. Thus By € O,; since S ¢ p,
we have BylpB=yeO, . Thus O, is

integrally close in K.

COROLLARY 1.2. Let K be a number field of
degree N and let o be in O then

N;(/ﬂ (aOy) :‘NK/F (a)‘

PROOF. We assume a bit more Galois theory than
usual for this proof. Assume first that K /[ is

Galois. Let o be an element of Gal(K /[]). It is
clear that o(Oy)/o(a)=0y,,;
c(0y) =0y, this
N/ (0(@)O) =Ny, (@O,) . Taking the
product over all oeGal(K/[), we have
N (N (@)Oy) = Ny, (@O )"

Ny, (@) is a rational integer and O, is a free[] -

since

shows that

Since

module of rank n,

Oy I Ny, (@¢)Or  Will have order N, (a)";
therefore
Ny, (NK/D (a)OK) =Ny, (aOK)n

This completes the proof. In the general case, let L
be the Galois closure of K and set [L: K]=m.

Codeflow : CheckClasses . For each authority class in
Authoritative(E), CheckClasses recursively calls
function Satisfy and returns the delegation chains (if
any) with minimum cost, proving that cert.issuer is a
member of the authority class. Such delegation chains
are stored in variable cert.issuer.ac ver list(E).
Furthermore, CheckClasses inserts a virtual
delegation certificate representing the computed
delegation chains. Intuitively, this virtual delegation

certificate represents the fact that cert.issuer is trusted
to produce certificates for attributes in Attributes(E),
since it is a member of an authority class listed in
Authoritative(E). After the analysis of cert.issuer,
function Satisfy checks the delegation flag of all the
authorities and classes in the authoritative clause of
E. If all such authorities and authority classes have
the delegation flag set to false, function Satisfy
terminates by returning the set cert.issuer.ac ver
list(E) of certificates. In fact, if delegation chains
cannot be considered, cert is a valid certificate with
respect to E only if it has been directly issued by an
authority that belongs to an authority class in the
authoritative clause of E. If at least an authority or a
class in the authoritative clause of E has the
delegation flag set to true, function Satisfy searches a
set of delegation chains that reaches an authority (or a
class) in the authoritative clause of TT and that
supports all the common attributes between cert and
TT. To this purpose, the set Deleg Certs of delegation
certificates (also including virtual delegation
certificates) is seen as a delegation graph, where there
is a node for each issuer and subject of the delegation
certificates, and there is an edge for each delegation
certificate going from the issuer of the certificate to
its subject. Each edge is labeled with a pair
attributes,cost, where attributes is the set of attributes
asserted by the corresponding delegation certificate
and cost is the cost for verifying the certificate. The
process of finding delegation chains consists in (i)
finding supporting chains for the attributes considered
(function FindChain); and (ii) removing redundant
supporting chains (function BuildVerificationList).
We assume that the delegation graph is acyclic and
that the subgraphs of Deleg Certs necessary for
verifying different certificates do not have common
edges (i.e., common certificates). Function FindChain
adopts a Dijkstra-like approach to determine, for each
attribute that appears both in cert and in TT, the
minimum cost path reaching cert from an authority
(which belongs to an authority class) in the
authoritative clause of TT with the delegation flag set
to true. We note that function FindChain invokes
function CheckClasses to verify whether the
authorities along the computed paths belong to a
trusted authority class. Function
BuildVerificationList analyzes the paths computed by
function  FindChain and removes possible
redundancies. The nonredundant delegation chains
obtained by function Satisfy are finally returned.
Consider a certificate cert issued by authority
Hospital (H), with subject Doctor (D), and certifying
attributes number (n), project (p), and specialty (s).
The set of authority certificates Authority Certs and
the set of delegation certificates Deleg Certs available
in the system and involved in the processing of cert.
It is easy to see that cert is compatible with the trust
table Physician , and since the issuer of cert is not an
authority listed directly in the except or authoritative
clause of Physician, we need to check the existence of
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delegation chains supporting attributes {n, p, s}.
Here, the authorities directly listed in the authoritative
clause of Physician are represented through a double
circle. Dotted edges and nodes represent the
delegation certificates and authorities needed for
verifying whether an authority belongs to an authority
class. The curly edge represents certificate cert.
Function Satisfy first calls procedure CheckClasses to
verify whether H is a member of the ClassHospital
authority class directly listed in the authoritative
clause of Physician. Function CheckClasses adds a
virtual delegation certificate, where the issuer is the
virtual authority C, the subject is H, the attributes are
those mentioned in the Physician trust table, and the
cost is the sum of the costs associated with the dotted
edges. Function Satisfy then calls n, G— M — H; p,
C —» R— H; and s, G— S — H.We note that function
FindChain while searching for the path supporting
attribute p, adds another virtual delegation certificate
where the issuer is again the virtual authority C; the
subject is R; the attributes are those mentioned in the
Physician trust table; and the cost is the sum of the
costs associated with the dotted edge from U to R.
Function Satisfy finally calls function
BuildVerificationList, which removes the redundant
delegation chain G — S — H supporting attribute s.
In fact, path G — M — H supports both attributes n
and s. The certificates that need to be verified are
therefore the ones along paths C - R — Hand G —
M — H, and the path represented by virtual
certificate C — R(.e.,U - R).
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